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Chapter 1 Overview

Skytree is a machine learning platform that gives organizations the power to discover deep analytic insights, predict
future trends, make recommendations, and reveal untapped markets and customers. As the only general purpose,
scalable machine learning system on the market today, Skytree is built for the highest accuracy at unprecedented
speed and scale.

Skytree is comprised of two components: Skytree Server™ and Skytree Platform™. This guide describes the features
available in Skytree Server along with examples on how best to use this for your own specific needs.

Note: Code samples are provided throughout this document that users can copy and paste. This method works
best when the document is viewed in Adobe® Reader®.

Frequently Asked Questions

• Running the Software (page 1)

• Datasets (page 1)

• Algorithms/Executables (page 2)

• File Formats (page 3)

• Company (page 3)

Running the Software

• What operating systems do you support?

We support Linux.

Datasets

• Where can I find the datasets used in the documentation?

The examples datasets are distributed along with the installation and are in the
/path/to/installation/SkytreeServer[<-version>]/datasets folder. By default this location is
/opt/skytree/SkytreeServer/datasets.
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Algorithms/Executables

• Which algorithms/methods does Skytree Server include?

We currently support

▪ Neighbor search: All neighbor search, with several options. See Nearest Neighbors (page 31) for more
information.

▪ Kernel Density Estimation (KDE): Computation of density estimates using one of the most popular
nonparametric methods, kernel density estimator. See Kernel Density Estimation (page 36) for more
information.

▪ K-Means: The well known clustering algorithm. See k-means (page 41) for more information.

▪ Linear Regression. See Linear Regression (page 125) for more information.

▪ Logistic Regression. See Logistic Regression (page 124) for more information.

▪ Singular Value Decomposition. See Fast Singular Value Decomposition (page 39) for more information.

▪ Support Vector Machine. See Support Vector Machines (page 107) for more information.

▪ Two-Point Correlation. See The Two-Point Correlation (page 48) for more information.

▪ Item-Based Collaborative Filtering for recommendations. See Item-Based Collaborative Filtering (page 139) for
more information.

▪ Gradient Boosted Trees. See Gradient Boosted Trees (page 86) and Gradient Boosted Trees Regression (page 96)
for more information.

▪ Random Forests: Bagged decision trees. See Random Decision Forests (page 83) and Random Decision Forest
Regression (page 94) for more information.

▪ Generalized Linear Model Regression. See Generalized Linear Models (page 130) for more information.

• What about the other machine learning algorithms?

Skytree Server is a subscription product that keeps expanding in its breadth and depth of machine learning
methods, as well as increasing in speed. Please contact Skytree support (support@skytree.net) for requests or
suggestions.

• What is the advantage of Skytree Server?

The goal of Skytree Server is to provide scalable machine learning solutions for business and scientific
applications. Skytree Server modules are significantly faster than popular alternatives, support scaling the data
and computation across many nodes of a cluster, and provide automation support for tuning to find the best
machine learning model faster.

• An executable is crashing or has a bug, what should I do?

Please contact Skytree support (support@skytree.net).

• If I have questions, requests, what do I do? Does Skytree Server provide support?

You can contact support using any of the following methods:

▪ Log in to support.skytree.net.
▪ Send questions to support@skytree.net.
▪ Call 408.392.9300 and select option 3.
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You can also view additional Skytree documentation by logging on to https://docs.skytree.net.

File Formats

• What kind of file formats does the Skytree Server support?

We use our own format which is in a text form. More information about the spec can be found here Skytree Server
File Format (page 9). We provide tools for exporting the following to Skytree format:

▪ Matlab matrices

▪ SVMLight files

▪ Delimited text files (e.g. CSV, TSV)

▪ JDBC Databases

▪ Avro files

▪ libpcap capture files

▪ json files

• Why do I have to convert my data to the Skytree Server format?

The existing popular formats are lacking type and sparsity information. Representing the data in the right format
is critical as it can save a lot of memory and maximize performance in large scale computations. If you have data
in another format please contact Skytree support (support@skytree.net). We may be able to provide a script for
converting it.

Company

• Are there other products from Skytree, Inc.?

The company also provides custom machine learning/optimization solutions for clients.

Additional Information

Refer to the following Skytree Server documents for additional information:

• Skytree Server Release Notes

• Skytree Server Installation Guide
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Chapter 2 Introduction to Machine
Learning

The main goal of ML is to analyze large volumes of data and extract patterns, rules and models that can be useful
either for characterizing existing data or for predicting the properties of future data. Specifically, ML allows you to
perform the following tasks:

• Density Estimation: Estimate how common or uncommon each point is. An example of a density estimation
method is:

▪ Kernel Density Estimation (page 36)

• Classification: Given labeled data (e.g., class labels), predict the class membership of a new data point. Examples
of classification methods are:

▪ Nearest Neighbors Classification (page 52)

▪ Support Vector Machines (page 107)

▪ Logistic Regression (page 124)

▪ Gradient Boosted Trees (page 86)

▪ Random Decision Forests (page 83)

▪

• Regression: Given the values associated with points, predict the associated value of a new point. Examples of
regression algorithms are:

▪ Linear Regression (page 125)

▪ Gradient Boosted Trees Regression (page 96)

▪ Random Decision Forest Regression (page 94)

▪ Generalized Linear Models (page 130)

• Dimensionality Reduction: Given a set of points, determine how many dimensions are required to represent it.
Potentially find the dimensions that are most important or generate new ones. One example of dimensionality
reduction algorithms is:

▪ Fast Singular Value Decomposition (page 39)

• Clustering: Given a set of data points, group the points in clusters according to a criterion. An example of a
clustering algorithm is:

Chapter 2 Introduction to Machine
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▪ k-means (page 41)

• Recommendations: Compute a similarity matrix consisting of similarity measures between pairs of candidate
items. Then, using the computed similarities and the set of items a target user has viewed, bought, or rated, a
make a recommendation for each candidate item.

▪ Item-Based Collaborative Filtering (page 139)

• Multidimensional Querying: Find points according to their overall characteristics across all dimensions, not just a
few specified dimensions as in a typical SQL query.

▪ Nearest Neighbors (page 31)

• Multivariate Statistics: Characterize the dataset according to its overall characteristics across all dimensions, not
just a few specified dimensions.

▪ The Two-Point Correlation (page 48)

Most ML settings involve two stages: training and testing/evaluation. In the training stage, labeled data (and
possibly unlabeled) are used to generate a model. In the testing/evaluation stage, the model is evaluated on data
that have not been presented in the training stage. If the label of the new data is known then we can generate a score
that measures the generalization power of the model.

Data Representation/Dimensionality

There are many different ways in which you can represent data. In ML, the most common way is through tables. Data
are represented as points in a d-dimensional space. So, the collection of data is just a long matrix of N x d size, where
N is the number of points.

The dimensions are also called features or attributes. The number of dimensions can range from a few to thousands,
or even millions. In reality, when the number of dimensions is very high, the features are often correlated. In such high-
dimensional scenarios, often the sparsity is very high, meaning that every data point has few non-zero entries. This
dimensionality of the data is called “extrinsic” dimensionality.

The extrinsic dimensionality is not a good measure for identifying the complexity of a dataset. It is often claimed that
datasets consisting of millions of points that are hundreds of thousands of dimensions can be analyzed. Due to
correlations, however, the true dimensionality (also known as “intrinsic” dimensionality) is much lower. In some cases,
some of the dimensions can actually be expressed as a function of other dimensions.

The fact that the intrinsic dimensionality might be much lower than the extrinsic can have significant impact on the
performance of an algorithm. Furthermore, the number of points of the dataset is not always indicative of the
expected performance of an algorithm. It is always possible to have two datasets that have the same number of
points and dimensions and get completely different scalability performance.

Machine learning often produces better results when the intrinsic dimensionality of the data is low or data points
tend to form clusters; otherwise, the algorithms may suffer from the “Curse of dimensionality” [donoho2000high].
Different algorithms may be best, depending on the intrinsic and extrinsic dimensionality of the data. In the next
section, we will discuss some of these methods.

Classification

Given two sets of points, one for class A and one for class B, we wish to find a model that can separate efficiently the
points of classes A and B. While we can always find a model that separates the points for both classes in the training
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set, such a model is likely to be very complex and will fail to generalize well on new points that were not used in the
training phases.

The goal of machine learning is to produce models that are as simple as possible and generalize well on unknown
data.

Regression

The problem of regression is well known in the linear algebra/statistics community. Given a number of independent
variables, we would like to find a linear model for predicting the dependent variable. In general, the regressors are not
independent variables and there are dependencies (linear or not) between them. A very important challenge in
regression is to remove the redundant regressors that do not contribute in the prediction of the dependent variable. In
other words, we follow the principle of Occam’s razor (http://en.wikipedia.org/wiki/Occam%27s_razor) and look for
the simplest model that explains the data. In linear regression, a simple model corresponds to a model containing as
many zero coefficients as possible. Skytree Server has a fully featured linear regression module with many options for
feature selection and model simplification. See Linear Regression (page 125) and [thompson1995stepwise].

Parametric vs. Non-Parametric Methods in ML

Machine learning models can be separated into “parametric” [Wasserman2004all] and “non-parametric”
[Wasserman2006all]. In general, parametric models are appropriate if the correct model class and parameters are
chosen. Conversely, non-parametric models are able to fit any underlying data distribution and depend only on the
available examples (data points). If the true model class is known, non-parametric models will converge to this only in
the limit of infinite data. Another drawback is that non-parametric models are often relatively slow.

In reality, it is almost impossible to determine the true model for the data problem at hand. Moreover, if the model is
very complex (which is commonly the case), tuning the parameters of the model can lead to a very difficult, non-
convex optimization problem. Thus, non-parametric methods tend to be more accurate because they do not rely on
knowing the correct data model. Skytree Server addresses the speed constraints of non-parametric models with a
focus on high-performance computing, distributing data and computation, and, where appropriate, using heuristics
and approximations.

K-Nearest Neighbors Classifier: The Simplest Classifier

The simplest classifier is the k-nearest neighbors (knn) classifier for two-class classification. A detailed description
and use instructions can be found in Nearest Neighbors (page 31). The following points provide a more basic
description of the nearest neighbors algorithm:

1. A set of points G is given that contains points that have either label A or B.

2. For a new point p, for which you want to predict the label, compute the Euclidean distances d with every point in
G.

3. Sort all the distances in d and keep the k points with the smallest distances.

4. From the k nearest points chosen in the previous step, count the points (n
1
) that have label A and the points (n

2
)

that have label B.

5. If n
1

> n
2
, then assign label A to point p, otherwise assign label B.
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Although the algorithm is simple the complexity for computing the k-nearest neighbors for one point is linear in the
size of the dataset, which might be very expensive when the number of points in G becomes large. We will see later
how this can be computed efficiently. Another issue with this method is how we choose k.

The most effective method for parameter tuning in ML is “leave-one-out cross validation.”

The following steps demonstrate how this method works for the knn case:

1. Choose an initial value of k.

2. For every point p in the training set G, compute its knn label by querying G without considering p.

3. Compute the number of points for which knn computes the right label.

4. Increase k until you reach a maximum k.

5. Keep the k that gives the highest score computed in 3.

Clustering

As previously mentioned, ML produces useful results only if the data has an interesting structure. One way of finding
an interesting pattern is to define a similarity measure and use a clustering algorithm. Clustering is a useful
preprocessing step in most machine learning algorithms, as it unveils multi-modality, which is very common in real
data. A notion of intrinsic dimensionality of the given dataset can be defined in terms of the discovered multi-
modality. However, identifying clusters is not an easy problem and in many cases it is ill-posed. There are two types
of clustering: hard and soft. In hard clustering, each point is assigned to one and only one cluster, while in soft
clustering each point has memberships (which have probabilistic interpretation in some cases) to multiple clusters.
Skytree Server supports k-means (page 41), which is a hard clustering method.
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Chapter 3 Data Preparation

The Skytree Server data preparation utilities provide a set of functions for getting the data into machine-learning-
usable form. The user starts with one or more CSV file(s) containing all of the data deemed useful for the machine
learning task. These CSV files should contain data in tabular form, including labels for classification tasks or target
values for regression tasks. Additional input formats are described in Other Data Sources (page 26).

The main steps in the data preparation process are described below.

1. Generate Header (page 11): This step reads the data files and recommends data types.

2. Convert Data (page 18): This step converts the data from raw format to a machine-learning-usable format.

Skytree Server File Format

Skytree Server natively supports files listing comma- or space-separated real values.

Note: Use either spaces or commas to separate values in lists. Do not include spaces when specifying comma-
separated lists.

Skytree Server also offers its own file format with special columns allocated for identifiers, classification labels, and
other values.

Note: Skytree Server allows the use of quotation marks to indicate that a space, comma, or other mark should be
interpreted as part of the data rather than as a column delimiter. For example, if a single column expresses a city
and state code separated by a comma, you can surround that content with quotation marks so that the entire
string (including the spaces and commas, but not the quotation marks) serves as the value for that column (for
example, "Atlanta, GA" or "San Jose, CA" On a similar note, if you want to include quotation marks in a
column's value, then you can surround the content with quotations marks and replace the intended quotation
marks with double quotation marks. For example, "my quoted ""data"" would evaluate to my quoted

"data".

Please refer to this documentation if you want to prepare the data using your own tools. Skytree Server also offers
data preparation tools that can be used to prepare the data into a form acceptable for machine learning with Skytree
Server.
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Skytree Server File Specification

Data points are stored in ASCII as comma- or space-separated values. In addition, two optional lines may be given at
the top of the file:

• A line starting with keyword “header” followed by a specification of the data types present in the file.

• A line starting with keyword “attribute_names” followed by a list of column titles.

The following is a example data file:

header,meta:3,real:2

1,0,1,3.4,6.37

-1,0,2,2.4,9.37

-1,0,3,3.4,66.37

-1,0,4,11.7,6.7

The “header” line is used to provide 2 pieces of information:

• Meta Information: Number of columns used for class labels, target values, and unique identifiers, etc.

• Data Specification: How many columns the data has for each different type of data.

These specifications are given as comma-separated data tags of the form “type:n”, where “type” gives the type or
purpose of the columns and “n” gives the number of columns. If no header is given, Skytree Server assumes that all
observed columns contain dense, real-valued data.

Meta Information

In the above example, “header,meta:3,real:2” indicates that each row has values for a total of 5 columns—3 “meta”
columns followed by 2 real-valued columns. Only the real-valued columns will feature in measures such as the
Euclidean distance, though the meta columns will be involved in the training of classifiers, regressors, and the like.

Specifically, the meta-data can contain 0 to 3 columns. In order, these are:

1. Class label: For example, +1 and -1 for classification problems, where +1 represents the positive class and -1
represents the negative class.

2. Target value: A real value associated with a point for regression problems.

3. Id: A unique point identifier. This can be either a string or a number. Note that string IDs cannot contain commas
or newlines.

Note, however, that many algorithms accept classification labels or regression targets in a separate file, in which case
the meta columns are unused. It is OK to include meta columns even if they will not be used; however, if it is desired to
omit them (for instance, to reduce file size), then the meta tag in the header should also be omitted or replaced with
“meta:0”.

If present, meta columns and the meta tag must always come to the left of any other data expressed in the file.

Categorical Data

Consider instead a data file with the header:
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header,real:4,int:10

Rows in this file would contain values for four real-valued columns followed by 10 categorical columns. In a given
column, each discrete categorical value is represented by a different integer. For instance, if a particular column
named “color” could have three different values — say blue, green, and red — then these might be represented as
the integers 5, 10, and 15. Note that categorical integers do not need to start from 0 or 1, nor do they need to be
contiguous.

Skytree Server handles categorical values differently from real values. In particular, measures of difference or
similarity involving categorical values only consider whether those values are equal or unequal. Thus, unlike real-
valued columns, the values 1 and 2 are just as different as the values 1 and 200. This property makes data tag
“int:n” appropriate for attributes that have no clear notion of distance (“exactly how different is this from that?”) or
sequence (“what comes first, this or that?”). On the other hand, “int:n” is not appropriate for attributes that just
happen to be integral, but can be subtracted from one another to form meaningful distances, or can be meaningfully
compared with one another using the less-than or greater-than operators; for this kind of data, it is better to use
“real:n” instead.

Datasets can contain only real columns, only categorical columns, or both real and categorical columns. If both types
of columns are present, then the real columns must precede the categorical columns, i.e., the header must always
read “real:n,int:m”, never “int:m,real:n”.

Sparse Data

The gbt, gbtr, rdf, rdfr, svm, nn, nnplus, nnc, and wnnc modules support sparse data inputs, where absent values
are understood as 0. Sparse data is indicated in the header with a special data tag “sparse:real:n” and is
expressed throughout the file as colon-separated attribute-ID:value pairs. For instance, a data file might contain:

header real:3 sparse:real:50

1.3 2.4 5.6 3:5.0 52:3.5

4.7 2.1 6.8 4:6.9 15:1.0 20:0.8 21:1.0

2.0 2.3 4.1

This file contains a mixture of dense and sparse real-valued columns. The dense columns must occur to the left of the
sparse columns and are represented as before, without attribute IDs. Then, a number of attribute-ID:value pairs up to
the specified number of sparse columns follows to the right. Note that no attribute-ID:value need be given if a row’s
sparse columns are all 0. Also note that attributes are numbered from left to right, starting from zero for the first
dense column (excluding meta columns); accordingly, the attribute ID of the first sparse column equals the number of
dense columns and the ID of the last sparse column equals the sum of the dense and sparse columns minus one. If a
dataset contains no dense columns, “real:n” may be omitted or replaced with “real:0”.

Sparse data cannot be used in conjunction with categorical data, nor can sparse data itself be categorical. However,
Boolean attributes represented as real (sparse or otherwise) will act exactly as they would if represented as
categorical. By extension, multi-valued categorical data can be represented in sparse by assigning a separate sparse
attribute to each possible value.

Generate Header

This first step takes in the raw file and analyzes the following:

1. The number of columns in the file

2. The type of each column:

▪ For numeric types, it calculates various statistics on the data.
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▪ For text, it creates dictionaries (containing all the possible values for the columns).

The output is a header file containing all this information.

Header Specification

An example header contain lines like this:

# column number: 1

integer:categorical=false:min=-1.0:max=981.0:mean=5.5596:sigma=49.387

# column number: 2

integer:categorical=false:min=-2.0:max=700.0:mean=17.966:sigma=39.034

# column number: 3

floating:categorical=false:min=-22:max=700.4:mean=87.987:sigma=6667.0

# column number: 4

text:categorical=true;dictionary="no","yes"

Briefly, this header describes the data file to have 4 columns:

• Column 1 contains integer values with a minimum value of -1 and a maximum value of 981.

• Column 2 contains integer values with a minimum value of -2 and a maximum value of 700.

• Column 3 contains floating-point values with a minimum value of -22 and maximum value of 700.4.

• Column 4 contains text data with two possible values: "no" and "yes".

Each line in the header file, except for comment lines beginning with "#", represents one data column. It is advisable to
open the header file and check the contents to see that the column types generated are consistent with the user’s
view of the data.

The header is generated only once and can be used subsequently to transform different subsets of the same data
format. It thus specifies a particular dataset.

A Simple Example

In the following example, a file named income.data contains the data to be analyzed.

# generate-header.sh \

-file income.data \

-header_out income.header \

-ignore_lines 1 \

-use_column_names \

-ignore_inconsistent_rows

The -ignore_lines argument tells the utility to ignore the first line when generating the header, as it may contain
header information such as column names, etc. Because the utility tries to determine if a column contains numeric
data, headers have to be ignored because they can contain text. If no lines are to be ignored, then this argument can
be omitted.

The flag -use_column_names indicates that the first line of the first file contains column names, which can be used
as arguments to other flags.
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By default, the utility checks that all lines have the same number of columns, issuing an error if there’s any
inconsistency. The flag -ignore_inconsistent_rows can be used to ignore rows with too few or too many
columns.

A -time_stamp option can be used to specify the name or number of a column that should be labeled with a time
stamp. Refer to Time Series (page 25) for more information.

Specifying a Delimiter

Skytree Server allows you to specify a -delimiter option to set the delimiter that is present in the file. Allowed
values include TAB, COMMA, SEMICOLON, VBAR, and SPACE. This value is auto-detected by default, allowing Skytree
Server to read CSV and TSV files as well as other delimited files. This option should be set manually in the case where
a delimiter is ambiguous or cannot be auto-detected.

Note: Skytree Server allows you to add quotations around text so that it will not be confused as a delimiter (for
example, when the delimiter is specified as COMMA, and an entry includes a deliberate comma). In addition,
because multiple spaces can be used to separate columns, it is necessary to explicitly denote empty column
values with "" when using -delimiter=SPACE.

# generate-header.sh \

-file income.data \

-header_out income.header \

-delimiter COMMA \

-ignore_lines 1 \

-use_column_names \

-ignore_inconsistent_rows

Identifying Label Columns

If one of the columns in the input CSV is to be used as the label in classification tasks, then it must be identified in the
header generation process. Run the following:

# generate-header.sh \

-file income.data \

-header_out income.header \

-ignore_lines 1 \

-use_column_names \

-label_index 15

This identifies column 15 as the label index. Column indices start at 1.

If -use_column_names is given, and the first line of the data file contains comma-separated text indicating column
names, then those column names can be used wherever an argument to generate-header.sh specifies a column.
In this example, a column name could be used in place of 15.

Identifying ID Columns

The -id_index option can be used to prepare a column to be interpreted as a string ID:
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# generate-header.sh \

-file income.data \

-header_out income.header \

-ignore_lines 1 \

-use_column_names \

-id_index 2

This column is built as non-categorical text in the output header file, and no dictionary is built. If this is specified
during generate-header.sh, then either the same -id_index must be specified during convert-data.sh

(thereby copying the strings into the output file) or the column must be ignored using -ignore_columns.

Specifying Categorical Columns

Sometimes all the data within a column will be numeric, but you want to consider the data categorical because the
data does not express magnitude. In the following, columns 3 and 5 are both treated as categorical:

# generate-header.sh \

-file income.data \

-header_out income.header \

-ignore_lines 1 \

-label_index 15 \

-categorical_number 3,5

When the -categorical_number option is used, values that are numerically equivalent are considered to be the
same. So if 100.0, 100, and 0100 all appear in a column, those are all treated as the same value. If you want to
consider different representations of a number as distinct, you can use the -categorical_text option instead:

# generate-header.sh \

-file income.data \

-header_out income.header \

-ignore_lines 1 \

-label_index 15 \

-categorical_text 3

Consider numbers that are used as product codes. In that situation, you might regard 0100 and 100 as distinct. You
can use both -categorical_number and -categorical_text when invoking generate-header.sh, if needed.
Both flags accept ranges of column numbers or names, such as 3-5, or a range with a step size, such as 3:2:9.

Note: It is possible for column names to include dashes or colons. Skytree Server can accept these as column
names if they cannot be interpreted as ranges. If a column name is ambiguous (for example, part of it matches
another column name), then Skytree Server will fail with an error message. When included in ranges, hyphenated
column names can only be notated with a colon. Similarly, column names that include colons can only be
specified in ranges using a hyphen.

Finally, use the -categorical_warn_pct option to request a warning when the number of categories exceeds the
specified percentage of items.
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Missing Values

Real-world datasets often contains missing values. Consider a column containing numbers and some missing
values. If missing values are indicated with a string such as ?, then the data preparation utility assumes that the
column contains text data even though most of the entries in this column are numbers. Use the -missing_value
option to avoid such a mis-characterization:

# generate-header.sh \

-file income.data \

-header_out income.header \

-ignore_lines 1 \

-label_index 15 \

-missing_value ?

Note: Skytree Server expects the same string to represent a missing value in any column.

Ignoring Columns

There may be instances when your data file includes information that you want to be ignored during the
convert-data.sh process. The -ignore_columns option allows you to specify a single, list, or range of column
names or numbers to be ignored during header generation. These columns will be treated as non-categorical text, and
no dictionaries will be formed. In addition, these columns will be flagged with an "ignored" type in the header.

When specified here, the same columns must also be included in the -ignore_columns option during
convert-data.sh.

# generate-header.sh \

-file income.data \

-header_out income.header \

-label_index 15 \

-id_index 1 \

-min_percentiles income.mins \

-max_percentiles income.max \

-ignore_columns 6-9,13 \

-categorical_text 3 \

-categorical_number 2 \

-time_stamp Date \

-words_columns 10

Note: It is possible for column names to include dashes or colons. Skytree Server can accept these as column
names if they cannot be interpreted as ranges. If a column name is ambiguous (for example, part of it matches
another column name), then Skytree Server will fail with an error message. When included in ranges, hyphenated
column names can only be notated with a colon. Similarly, column names that include colons can only be
specified in ranges using a hyphen.

Multiple Input Files

If the data is split across many files, it is advisable to use all these files to generate the header. This will give a
complete picture of the data. Notable reasons include:
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• One file may not contain all the different values categorical and/or text columns can take, and it is important to
have complete dictionaries.

• Simple statistics such as means, variances, minimum values etc. can be different across files, and these should be
accounted for.

The example below shows how to use two files:

# generate-header.sh \

-file income.data \

-file income.test \

-header_out income.header \

-ignore_lines 1 \

-ignore_lines 1 \

-label_index 15 \

-missing_value ?

Note that two arguments have been provided for -file and two arguments for -ignore_lines. This is because the
two files may have different numbers of leading lines to be ignored. Therefore, -ignore_lines has to be repeated
for each file, even if it is the same for all files. You can omit all -ignore_lines arguments, which is equivalent to
specifying 0 for all files.

In order to use column names when the -use_column_names flag is given, the -ignore_lines value for the first file
must be at least 1, while the -ignore_lines argument for other files can be any value. The column names are taken
from the first file.

Suggesting Sparse Columns

The convert-data.sh script can produce files with columns in a space-saving sparse format, which some Skytree
Server methods can use.

Whether it's useful to make a column sparse depends on the ratio of zero to non-zero entries in particular columns,
which may not be apparent on inspection of a data file. The generate-header.sh script can suggest the columns
that should be made sparse.

# generate-header.sh \

-file income.data \

-header_out income.header \

-ignore_lines 1 \

-sparse_suggest_pct 50

In the console output, the script will indicate any columns for which the ratio of zero to non-zero values exceeds 50
percent.

Percentiles and Java Options

The generate-header.sh script can pass the flags -min_percentiles or -max_percentiles with
accompanying file arguments. Such files contain comma-separated vectors of percentiles (numbers between 0 and 1)
for clamping or ignoring numeric data values during the subsequent convert data step. The vector length must be the
same as the number of columns in the input data files. For example:
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# generate-header.sh \

-file income.data \

-header_out income.header \

-ignore_lines 1 \

-label_index 15 \

-missing_value ? \

-min_percentiles income.mins \

-- -Xmx20g

Because income.data contains 15 columns, the file income.mins might look like:

0.0,0.0,0.0,0.25,0.5,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

A percentile of 0.0 indicates that the actual minimum value for a column is used as the min in the header file. A
percentile of 0.5 indicates that the median value becomes the min for that column, and so on.

In this example, the argument following the double-dash (--) is passed to the Java run-time environment. The -min_
percentiles and -max_percentiles options are particularly memory intensive, so you may need to modify the
default behavior of the script. Here, the additional argument sets the maximum Java heap to 20 GB. Any needed
Java run-time flags can be passed in this way.

Identifying Date Columns

The -time_stamp option specifies a column name or number that includes a measure of time to be converted to a
UNIX timestamp. If the timestamp is not already in UNIX format, then the -date_format option must also be
specified. Optionally, the user can specify the -time_zone option to define which time zone the date column is in.

# generate-header.sh \

-file SimulatedDataWithCPC.csv \

-header_out simulated.header \

-use_column_names \

-ignore_lines 1 \

-categorical_number 1,2,3 \

-time_stamp Date \

-categorical_text Age,Gender,Location,Interest \

-date_format "MM/dd/yy"

Note: The -date_format option is based on the Java SimpleDateFormat class definition:
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

Text Handling

The generate-header.sh script can pass the -words_columns flag with an accompanying column specification
argument. For each possible word, this parameter creates a notional column in the output .st file. The entry will be 1 if
the word occurs in a row, and 0 if it does not. Because most rows don't contain any particular word, the columns are
always made sparse. (That is, there is one entry for each word that occurs; otherwise the column is not represented in
the output.) For example:

# generate-header.sh \

-file income.data \
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-header_out income.header \

-ignore_lines 1 \

-words_columns 6

Using libsvm Data

Skytree Server accepts libsvm-formatted data to be specified in generate-header. Input lines can contain both
dense columns as normal as well as sparse entries of the form:

<column-number>:<value>

Column numbers must range from 1 to a value given on the command line using -num_sparse_input_columns. If
-num_sparse_input_columns is not provided, then sparse entries cannot be used. In addition, any values found
outside the permitted range result in a run-time exception. Dense column numbers are shifted such that they follow
the sparse columns, even if they are listed before the sparse data in the input file. For example, if a file given with
-num_sparse_input_columns=100 contains the lines:

apple, 1:0.5, 20:100, 100:foo

banana, 25:1.0, 100:"bar,baz"

then values "apple" and "banana" will be stored in column 101.

Accordingly, we recommend that you specify column names, especially for the dense columns, which are formatted
the same way as data, e.g.:

label, 1:"pixel_1", 2:"pixel_2"

With Skytree Server, it possible to provide incomplete sets of column names if some of the columns (e.g. the sparse
columns) do not need to be named. If column names are omitted for a set of columns, then those columns can only
be referenced by number, while all others can be referenced by name or number.

As implied above, sparse columns can contain numerical or categorical data, can be separated by any delimiter, and
can contain quoted data. Absent sparse values are treated the same as the string "0", even for categorical columns.
The -skip_bad_lines and -max_bad_lines_per_mapper options handle sparse column numbers given outside
the permitted range, which currently results in the lines being dropped entirely, rather than ignoring the individual
entries.

Convert Data

Once the header is generated, the task at hand is to convert the data into the Skytree Server format. The Skytree
Server format is similar to a CSV format with certain reserved columns. There are two basic inputs to the conversion
utility: the input header and the input data file. The resulting output is a file containing the data to be used for
machine learning with Skytree Server.

The sections that follow include some examples.

A Simple Example

The input header income.header is used to transform the input data from the CSV file income.data into the file
income.data_prep.st in the Skytree Server format.
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# convert-data.sh \

-file income.data \

-header_in income.header \

-ignore_lines 1 \

-data_out income.data_prep.st

The output of the conversion utility indicates that the data contains 15 columns available for machine learning and
appears as follows:

Reading the input data specification

Neither -ignore_out_of_range nor -clamp_out_of_range has been

provided. Out of range values may not be handled properly.

Missing values are not being imputed to mean or are not being ignored.

They will be set to ?.

Commencing transformation process.

Dense Dimensions: 15. Total Dimensions: 15

Finished transformation process

Identifying Label Columns

If the income.data file also contains classification labels, these must be identified so that they do not become part
of the data matrix. The labels are output to a separate file that can later be used with the various Skytree Server
classification methods. Keep in mind that the column to be used as labels must be a categorical column and have an
associated dictionary. If available, a column name can be used. Please refer to Generate Header (page 11). Here is an
example of how to create a labels file:

# convert-data.sh \

-file income.data \

-header_in income.header \

-ignore_lines 1 \

-label_index 15 \

-data_out income.data_prep.st \

-labels_out income.data_prep.labels

The data labels will be output to income.data_prep.labels. The output will be similar to the following:

Reading the input data specification

Neither -ignore_out_of_range nor -clamp_out_of_range have been

provided. Out of range values may not be handled properly.

Missing values are not being imputed to mean or are not being ignored.

They will be set to ?.

Commencing transformation process.

Dense Dimensions: 14. Total Dimensions: 14

Finished transformation process.

Class Labels

When running convert-data.sh and generating a labels file, the labels generated are always "-1" and "1" for a
binary classification problem and "1" to "N" for a multi-class classification problem. If the original dataset has a more
descriptive label, such as "<=50k" and ">50k" (as is the case with the income.data file), then convert-data.sh

creates a mapping from the original labels to the integers. It does this via lexicographically ordering the label column.
The first label gets mapped to "-1" and the second label gets mapped to "1" in the case of binary classification. For
multi-class classification, the original labels get mapped to integers, starting from 1.
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Identifying Target Columns

If instead of classification labels, the income.data file contains regression targets, a similar process may be
followed. The targets are output to a separate file that can later be used with the various Skytree Server regression
methods. Here is an example of how to create a targets file:

# convert-data.sh \

-file income.data \

-header_in income.header \

-ignore_lines 1 \

-target_index 1 \

-data_out income.data_prep.st \

-targets_out income.data_prep.targets

The data labels will be output to income.data_prep.targets. If available, a column name can be used in place of
a column number for target_index.

Identifying ID Columns

When ranking data during information retrieval, Skytree Server expects that group IDs are already provided in the
third column of the .st file. Use the -id_index option with convert-data.sh, and point that to the column
containing the group IDs.

# convert-data.sh \

-file income.data \

-header_in income.header \

-ignore_lines 1 \

-id_index 1 \

-data_out income.data_prep.st \

-targets_out income.data_prep.targets

In the above example, the group IDs are output to income.data_prep.st in the third meta column.

Note: If -id_index was specified during generate-header.sh, then either the same -id_index must be
specified here (thereby copying the strings into the output file) or the column must be ignored using -ignore_

columns.

Mean Imputation

Mean imputation is built into the data preparation utilities and will apply only to columns containing numeric data.
For categorical values, mean imputation will replace missing values with 0 for categorical data transformation
strategy 1 (horizontalization, see below) or -1 for strategy 2 (unique identifying value). The following command
imputes means for missing values:

# convert-data.sh \

-file income.data \

-header_in income.header \

-ignore_lines 1 \

-label_index 15 \
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-data_out income.data_prep.st \

-labels_out income.data_prep.labels \

-mean_impute

Missing Value Identification

If missing values are present in the data as identified during the generate-header process, and no imputation is
performed, then the convert-data process indicates missing values with the character ‘?‘ in the file generated
through -data_out. Examples of these files can be found in the datasets folder (e.g. income.missing.data.st
and income.missing.test.st). Skytree Server modules that support missing values within the algorithm can use
input data with missing values in this format.

Out-of-Range Values

Values that are out of the range specified in the header can be dealt with using one of two options: -clamp_out_
of_range or -ignore_out_of_range. If -clamp_out_of_range is specified, any values in a column outside of
the minimum and maximum values specified in the header are clamped to be the minimum and maximum. If
-ignore_out_of_range is specified, then any rows that have values outside of the range specified in the header
are ignored.

Normalization

Normalization is built into the data preparation utilities and is only applicable to columns containing numeric data.
Two forms of normalization are available:

• Unit: This form makes the data range between 0 and 1.

• Standard: This gives the data a mean value of 0 and unit variance.

To normalize the data, the following command can be used for unit normalization:

# convert-data.sh \

-file income.data \

-header_in income.header \

-ignore_lines 1 \

-label_index 15 \

-data_out income.data_prep.st \

-labels_out income.data_prep.labels \

-normalize unit

To use standard normalization, simply replace the unit keyword with standard.

Ignoring Columns

Sometimes data can contain columns that are to be ignored for whatever reason (not relevant to the analysis,
exploratory modeling, etc.). The following example illustrates how to ignore specific columns from income.data:

# convert-data.sh \

-file income.data \
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-header_in income.header \

-ignore_lines 1 \

-label_index 15 \

-data_out income.data_prep.st \

-labels_out income.data_prep.labels \

-normalize unit \

-ignore_columns 2,6-9,13

This example will ignore columns 2 and 13 and all columns in the range 6 to 9 including both 6 and 9. If available,
column names can be used in place of column numbers for the -ignore_columns argument. A range with a step
size, such as 6:2:10 can also be used.

Note: It is possible for column names to include dashes or colons. Skytree Server can accept these as column
names if they cannot be interpreted as ranges. If a column name is ambiguous (for example, part of it matches
another column name), then Skytree Server will fail with an error message. When included in ranges, hyphenated
column names can only be notated with a colon. Similarly, column names that include colons can only be
specified in ranges using a hyphen.

Weighted Columns

If there is a need to scale numeric columns by a constant, then the following can be used:

# convert-data.sh \

-file income.data \

-header_in income.header \

-ignore_lines 1 \

-label_index 10 \

-data_out income.data_prep.st \

-labels_out income.data_prep.labels \

-normalize unit \

-weights weights.csv

The above example assumes weights.csv is a file that contains one line representing the weights that need to be
applied to each column. The weights must be in CSV format and contain exactly the same number of entries as there
are relevant lines (i.e., not commented) in the header income.header. For example:

0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.10

If the original data file income.data contains 4 columns, then the above is a valid weights specification. It will
multiply column 1 by 0.1, column 2 by 0.2 and so on. If the column contains text, is in the ignore list, or is the label
column, then the weight value in that column has no effect, though it must still be specified to maintain order.

Categorical Data Transformation

There are two simple ways (strategies) to transform categorical data into a form acceptable for machine learning:

1. Horizontalize: Create a new column for each different value a categorical column can take. A value of 0.707 is
assigned to the right column, and the columns for all other values get 0.

2. Replace the categorical value with a unique number identifying the value.
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The difference between the two methods is illustrated below. Consider example data as follows:

blue,1,3

red,4,5

blue,2,7

...

With strategy 1 (horizontalize), the following transformation will be applied (assuming that column 1 can only take
values of blue and red):

0.7071067811865475,0,1,3

0,1,4,5

0.7071067811865475,0,2,7

With strategy 2 (unique identifier), the following transformation would be applied:

1,1,3

2,4,5

1,2,7

The convert-data.sh utility defaults to the unique identifier strategy. This can be changed if desired to strategy 1
through the argument -horizontalize:

# convert-data.sh \

-file income.data \

-header_in income.header \

-ignore_lines 1 \

-label_index 15 \

-data_out income.data_prep.st \

-labels_out income.data_prep.labels \

-normalize unit \

-horizontalize

The proper choice between strategy 1 and strategy 2 depends on the machine learning method. For example, if you
are performing nearest neighbor (nn) actions, you can normalize the non-horizontalized variables, and then the rough
distance for any continuous dimension would be 1 on average.

Note: Datasets should not include both categorical values and sparse data. The categorical values should be
horizontalized first.

Sparse Data

Some Skytree Server methods can accept data in a sparse format, which can significantly reduce the size of the data
file produced by convert-data.sh. In the sparse format, only non-zero values appear in the output file. In this
example, specifying two sparse columns reduces the size of the data file over 10%.

# convert-data.sh \

-file income.data \

-header_in income.header \

-ignore_lines 1 \

-data_out income.data_prep.st \

-sparse_columns 11,12
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The generate-header.sh script can suggest the columns that should be made sparse. Refer to Generate Header
(page 11).

Categorical columns can also be made sparse when -horizontalize is specified. As stated in the section,
Categorical Data Transformation (page 22), the -horizontalize option creates a new column for each unique value
that a categorical column can take.

# convert-data.sh \

-file income.data \

-header_in income.header \

-ignore_lines 1 \

-label_index 15 \

-data_out income.data_prep.st \

-labels_out income.data_prep.labels \

-normalize unit \

-horizontalize

Extracting Date Columns

If a date format was specified in generate-header.sh, then you can also us the -extract_from_timestamp
option to pull specific date columns from the file (for example, day_of_week, week_of_month, etc.). This extracted
information can then be used, for example, when attempting to predict when users will be most likely to buy items.

The following code samples show this process beginning with generate-header.sh. Note again that this process
extracts date columns that already exist in the -header_in file. This is different than specifying -time_series in
the convert-data.sh process, which takes existing columns and outputs those to individual files in a single folder
based on the ID.

# generate-header.sh \

-file SimulatedDataWithCPC.csv \

-header_out simulated.header \

-use_column_names \

-ignore_lines 1 \

-categorical_number 1,2,3 \

-time_stamp Date \

-categorical_text Age,Gender,Location,Interest \

-date_format "MM/dd/yy"

# convert-data.sh \

-file SimulatedDataWithCPC.csv \

-target_index 13 \

-targets_out simulated.targets \

-header_in simulated.header \

-data_out data.st \

-ignore_lines 1 \

-ignore_columns Ad_id,Impressions,Clicks \

-extract_from_timestamp second,month,day_of_week,year

Refer to the Convert Data Options (page 223) in the Command Reference Appendix for a list of keywords that can be
used with -extract_from_timestamp.
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Time Series

Often data is desired in the form of a time series, where each row represents a point in time. Columns of type=time
in data files are automatically formatted into a UNIX standard. This works well when you want to divide by the ID of
the different time series. In some cases, you might want time-series information to be outputted to individual files in a
single folder. This can be performed by enabling the -time_series option.

When time series is enabled, use the -id_index option to specify the column name or number for the data to be
outputted as separate files. The -data_out option specifies the folder where each file will be written.

Note: When specifying time-series data, the -data_out option points to a folder rather than a file.

The -id_map_file option is required and provides the filename for each ID. Use the -max_open_files option to
specify the maximum number of files that can be open at one time. Finally, the -time_zone option defines the way
the data is formatted.

# convert-data.sh \

-file SimulatedDataWithCPC.csv \

-header_in simulated.header \

-data_out ~/data.simulated \

-id_map_file simulated.map.out \

-time_series \

-id_index "Interest" \

-max_open_files 6 \

-ignore_lines 1

Text Handling

The convert-data.sh script can also pass the -words_columns flag with an accompanying column specification
argument. For each possible word, this parameter creates a notional column in the output .st file. The entry will be 1
if the word occurs in a row, and 0 if it does not. Because most rows don't contain any particular word, the columns
are always made sparse. (That is, there is one entry for each word that occurs; otherwise the column is not
represented in the output.) For example:

# convert-data.sh \

-file income.data \

-header_in income.header \

-words_columns 6 \

-rare_words_pct 10 \

-stop_words_pct 10

The -rare_words_pct and -stop_words_pct filter out rare and common words from the .st file. This filtering
does not change the number of notional columns, so multiple runs of convert-data.sh with different filtering
percentages will yield output files where the column numbers are identical. Also, note that words that can be parsed
as numbers become the word "_NUMBER_". In addition, the -ignore_new_words option can be used to prevent
words not seen in the header generation process from being counted.
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Other Data Sources

You can create CSV files from JDBC-enabled databases, JSON, Avro, and libpcap capture file data sources. The
resulting CSV file can then be processed with other data preparation tools to create input files for Skytree Server.

JDBC Databases

Relational databases can be used as the source of data for machine learning with Skytree Server if they have a JDBC
(Java database connectivity) driver available. Most commonly-used relational database systems have such a driver.
Common JDBC Connection Formats (page 26) provides a sample of some common URL formats and drivers.

The db-connect.sh script allows you to run SQL queries against a JDBC database and store the results to a CSV
file. This CSV file can then be used with the other data preparation tools.

The db-connect.sh script takes the following required arguments:

• -db_url - a database URL

• -jdbc_driver - the name of the class for the driver

• -sql_query - the query string.

In addition, you must supply either -csv_out, the name of an output file, or -header_out, the name of a header file,
or both.

While output files are in CSV format, header files are in the same format as those created by generate-header.sh.
The driver class must be available in your Java CLASSPATH.

If the database requires authentication, you can use the -user and -password flags. If the -user flag is used
without the -password flag, which is recommended, the script will still prompt for a password.

Use the -help flag to get all available options or review the Database Connection Options (page 227) in the Command
Reference Appendix.

# db-connect.sh \

-jdbc_driver org.sqlite.JDBC \

-db_url jdbc:sqlite:ints.db \

-csv_out data.actual \

-header_out header.actual \

-null_string NULL \

-sql_query "SELECT some_int,some_tiny_int,some_small_int, \

some_big_int FROM int_table"

Common JDBC Connection Formats

The required format for database URLs varies among database systems but usually starts with jdbc:. The following
table describes some example connection URL formats and JDBC drivers. This table is meant to be for reference only.
Please consult your database vendor’s documentation to determine how to obtain a JDBC driver and how to use it,
as these URL formats can change between releases.
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Database URL Format Driver Class Name

DB2® v8 (type
2) jdbc:db2:<database>

com.ibm.db2.jcc.DB2XADataSource

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

DB2® v8 (type
4) jdbc:db2://<host>:<port>/<database> com.ibm.db2.jcc.DB2Driver

Microsoft SQL
Server

jdbc:microsoft:sqlserver://<host>:<port>;databaseName=
<database>;SelectMethod=<select_mode> com.microsoft.jdbc.sqlserver.SQLServerDriver

MySQL jdbc.mysql://<host>:<port>/<database> com.mysql.jdbc.Driver

Netezza® jdbc:netezza://<host>:<port>/<database> org.netezza.Driver

Oracle (thin) 9i
and 10g jdbc:oracle:thin@<host>:<port>:<database> oracle.jdbc.driver.OracleDriver

Oracle type 2
(OCI) 9i and
10g

jdbc:oracle:oci:@<database> oracle.jdbc.OracleDriver

Table 1: JDBC URLs and Driver Class Names

JSON Files

JSON is a lightweight data representation associated with the Javascript programming language. JSON objects
have a tree-like structure, so to create a tabular CSV file requires that the tree be flattened.

Suppose you have a file containing the following JSON:

{ "name":"Fred Smith","address":{"number":1425,"street":"Park Avenue"},

"age":42,"height_inches":75 }

{ "name":"Betty Smith","address":{"street":"Poplar Way"},"age":51 }

Running the script json2csv.sh on this file produces:

address_number,address_street,age,height_inches,name

1425,Park Avenue,42,75,Fred Smith

?,Poplar Way,51,?,Betty Smith

The first line contains labels for the data columns. The labels represent paths to get to the data. For example, the
second label, address_number, represents the number fields within the its containing object, which itself is given by
the field address. Note that the JSON object for Betty Smith does not have her street number or height_inches, so
in the CSV file, those fields have a ? indicating missing values.

The script json2csv.sh takes one or more filenames, and produces new files with the same name, but a .csv

extension added. Each JSON object must start on a newline, though each object may span several lines.

The CSV files created by json2csv.sh can be processed by the generate-header.sh and convert-data.sh

scripts, in the same way as any other CSV files.

Chapter 3 Data Preparation Confidential Skytree Server User Guide | 27



Avro Files

Avro is a data serialization library which can store data in a binary format. Like JSON, the objects in an Avro file have
a tree-like structure, which can be flattened to a CSV format.

The script avro2csv.sh takes one or more filenames as arguments. Those files must be in Avro binary format. The
resulting CSV files have the same names as the input filenames, with a .csv suffix added.

libpcap Capture Files

libpcap is a popular library for programming network applications that work at the individual packet level. The
Wireshark application uses that library, and can save series of network packets to capture files for later use.

The pcap2csv.sh script produces CSV files from libpcap capture files, which may be in the original or “new
generation” format. The script extracts somewhat different information for IPv4 and IPv6 packets.

For both IPv4 and IPv6 packets, the CSV contains the fields:

arrival time, frame length

where arrival time is the time elapsed in seconds since the Unix epoch (UTC January 1, 1970), and frame

length is the number of bytes of data in the packet.

For IPv4 traffic, the CSV output contains these fields:

DSCP, ECN, total length, identification, flags, don’t fragment,

more fragments, time to live, protocol number, protocol name,

source address, destination address

For IPv6 packets, the output fields are:

traffic class, differentiated service, ECN, ECN-capable transport,

ECN-CE, flow label, payload length, next header,

protocol name/extension header, hop limit, source address, destination address

Consult a network reference for more information on the significance of these fields.

By default, the pcap2csv.sh script will output both IPv4 and IPv6 packets to the same output file. In that case, for
an IPv4 packet, the columns associated with IPv6 packets will contain ?; likewise, for IPv6 packets, the IPv4 columns
will contain ?.

If desired, the flags -ipv4_only and -ipv6_only can be used to filter the output so that the CSV file contains only
IPv4 or IPv6 packets. Note that capture files may contain non-IP packets, which are ignored by the script.

Sliding Window for Time Series

Often data comes in the form of a time series, where each row represents a point in time. For machine learning
purposes, it can be useful to examine slices of such data at a time. The time-slicer.sh script allows you to create
statistics from the sliced data files, which you can then use with the other data preparation tools.

time-slicer.sh makes use of a sliding window that contains rows of input files by splitting the data using the ID,
computing statistics from the data, and writing each split into a file containing a single series. Each file is created
with a map between the ID and the respective file. For example, assume an input file:
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ID,sensor1,sensor2,time,date

a,-0.882383307710675,-0.953257943291345,1409264744,2014-08-28 15:25:44

a,0.999857493489427,-0.318425138553527,1409264745,2014-08-28 15:25:45

a,0.175486589042668,-0.17393956332564,1409264745,2014-08-28 15:25:45

The following command can be used to slice this data. The flags -input_file and -output_file are required. The
flag -window_width is also required and specifies the size of a slice. The -ID_column option indicates that a
column is used as a key to identify distinct blocks of rows. The column can be specified with an index or a column
name. The utility assumes that such blocks are contiguous in the input file. If this option is given, output rows always
contain values from a single block.

# time-slicer.sh \

-input_file input_data \

-output_file output.actual \

-window_width 2 \

-write_column_descriptors \

-write_window_descriptors \

-use_column_names \

-ID_column ID \

-time_stamp Date \

-ignore_columns sensor1,time \

-window_increment 1

Using time-slicer.sh, an output file will be similar to the following:

WIN_DESCR,ID (KEY COLUMN),sensor2_min,sensor2_max,sensor2_median,

sensor2_mean,sensor2_sd,sensor2_count,sensor2_missing,

sensor2_zero_cross_rate,sensor2_extremes

WIN_1390922744000_TO_1390922745000,a,-0.953257943291345,

-0.318425138553527,-0.953257943291345,-0.6358415409224359,

0.4488945811497865,2.0,0.0,1.0,0.0]

Note: In the output file, the missing columns (*_missing) and extremes (*_extremes) are ratios of missing
values and extreme value counts over the total number of points within the window or within the number of rows
if -time_gap is not specified.

Use the -help flag to see all available options, or refer to Time Series Options (page 335) in the Command Reference
Appendix.
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Chapter 4 Discovery

The Skytree Server Discovery methods provide the solid enterprise-level base for your organization's data discovery
needs with the highest in speed as well as statistical rigor. Skytree Server Discovery provides strong fundamentals for
essential tasks of unsupervised machine learning: clustering, density estimation, dimension reduction, and
multidimensional querying. Skytree Server Discovery performs these operations as needed by most organizations,
with best-in-class scalability and response time. Methods include state-of-the-art fast/scalable modules for:

• Nearest Neighbors (page 31)

• Nearest Neighbors Plus (page 33)

• Kernel Density Estimation (page 36)

• Fast Singular Value Decomposition (page 39)

• k-means (page 41)

• The Two-Point Correlation (page 48)

Nearest Neighbors

Nearest neighbor search is a fundamental algorithm in statistics and machine learning. For a given point, the goal is
to find the nearest neighbor from a reference dataset. The distance between points is often defined in terms of the
Euclidean distance. In general, any similarity can be used, but only if the similarity satisfies the triangular inequality
(http://en.wikipedia.org/wiki/Triangle_inequality).

The Skytree Server k-nearest-neighbors method uses state-of-the-art algorithms, data structures and computational
techniques to reduce computational complexity achieving many orders of magnitude speedup over a conventional
implementation.

Overview

Nearest neighbor search is one of the most fundamental operations occurring ubiquitously in many machine learning
problems. The simplest form of the problem is defined as: for the given set R of N points in a metric space and a query
point q within this metric space, find the closest point in R to q based on the given metric. For example, nearest
neighbors search can be used for a three-dimensional astronomy dataset containing spatial coordinates of stars
with a Euclidean metric. For each star, we can find its nearest neighboring stars which hence exert the largest
gravitational attraction on it. The nearest neighbors search problem can also be posed as an optimization problem in
which the goal is to minimize the distance between the query point q and the returned neighbor point.

Without loss of generality, we assume that the metric is the Euclidean metric defined as:
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A natural generalization of this problem is to find k closest points to the given query. This is the k-nearest-neighbor
problem where the number of closest neighbors required is k.

A batch form of the problem called “all-nearest-neighbors” is another generalization. In this variant, we find k nearest
neighbors for each query point in the given set. These query points are independent of each other and one can run
the single query point k-nearest neighbors algorithm multiple times to obtain the solution for each point separately.

K-Nearest Neighbors Classifier

If each of the points in the reference set is labeled, we can build a k-nearest-neighbor classifier. In this case the
reference set will contain all the labeled data (the training set) and the query set will contain all the points for which
the labels have to be predicted. If the label of a given query point is known (when it is part of a validation set), then
we can use it to compute the empirical training error. For example, consider the binary classification problem. For a
given value of k, we can predict the label of a given query point in the following ways:

• Voting: Choose the label by a majority vote of the k neighbors of the query point with each neighbor getting one
vote (k should be odd).

• Weighted scoring: Choose the label by weighting the vote of each of the k neighbors by its distance to the query
point.

k-nearest neighbors classifiers have been successfully applied in many business problems, such as: [henley1996k]
and [baesens2003benchmarking]. Refer to Nearest Neighbors Classification (page 52) for more information

Computational Complexity

For a given query point and a reference set R of size N, a naive algorithm for computing its 1-nearest neighbor is to
calculate the distance between the query point and each reference point. This leads to an algorithm with complexity
O(N). This algorithm extended to the all-nearest-neighbors problem with a query set of size N is of complexity O(N2).
This naive algorithm cannot handle even datasets of moderate size.

Usage Examples

Run the following command to see the options available for the nearest neighbors modules:

# skytree-server nn --help

A Simple Example

Run the skytree-server neighbors module with the following arguments:

# skytree-server nn \

--references_in random_1kx6.st \

--k_neighbors 5
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The above call will compute the five nearest-neighbors for each of the points in the set (excluding itself as the nearest
neighbor candidate) and their corresponding distances but it will not write them to the disk. If you want to do so, you
must do:

# skytree-server nn \

--references_in random_1kx6.st \

--k_neighbors 5 \

--distances_out distances \

--indices_out neighbors

Note that the distances file will contain the distances, not the squared distances.

Bichromatic Neighbors

When the reference and the query set are the same, this is referred to as the monochromatic neighbors problem.

When you define only the reference set using the flag --references_in, the program assumes that the same set is
both the reference and the query. If a point belongs to the query and the reference set, then its nearest neighbor is
itself. When the --queries_in flag is not set, the program will compute the nearest neighbors but will exclude this
trivial neighbor which is the point itself. In the following setting, though, the program will compute the five nearest
neighbors for each query point. For each query point, the first nearest neighbor in this case is the query point itself.

# skytree-server nn \

--references_in random_1kx6.st \

--k_neighbors 5 \

--queries_in random_1kx6.st \

--distances_out distances \

--indices_out neighbors

Nearest Neighbors Plus

Nearest Neighbors Plus offers the same basic functionality that is available in the nn module but contains additional
options. These include several means of approximation as well as control over the memory footprint of the
computation.

Run the following to see the available options:

# skytree-server nnplus --help

You can also refer to Nearest Neighbors Plus Options (page 299) in the Command Reference Appendix for information
on the available options.

A Simple Example

The nnplus module computes a similar result to nn if none of the additional options offered by nnplus are
employed. For instance, compare the following:

# skytree-server nn \

--k_neighbors 5 \

--references_in random_1kx6.st \
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--indices_out neighbors.1 \

--distances_out distances.1

# skytree-server nnplus \

--k_neighbors 5 \

--references_in random_1kx6.st \

--indices_out neighbors.2 \

--distances_out distances.2

These both perform all-k-nearest-neighbors because no --queries_in are provided. All-nearest-neighbors finds for
each reference point the nearest k other reference points. Note that there are no differences in the found neighbor
indices; however, compressed computation (see next section) is enabled by default for nnplus, which may result in
small differences in the output neighbor distances. Compressed computation is not available in nn.

Compressed Computation

By default, Nearest Neighbors Plus uses compressed distance computations. This both reduces the memory footprint
of computation and accelerates computation, but reduces the accuracy of computed distances by an amount that is
usually negligible.

In order to perform exactly the same computation as in the nn module, you must use:

# skytree-server nnplus \

--k_neighbors 5 \

--references_in random_1kx6.st \

--indices_out neighbors \

--distances_out distances \

--compression=off

Note: Unlike other command line options, the = is mandatory for --compression. Using a space will not give the
desired result. Keywords off, no, false, and 0 all have the same effect.

Controlling Memory Usage

You can also limit the (relative) amount of total system memory used by nnplus with the --memory_usage option.
By default, Skytree Server makes an effort not to exceed 75% of its host system’s memory, breaking computation into
smaller chunks if necessary. Setting --memory_usage=1.00 grants Skytree Server all memory resources, but
computation will still be partitioned to avoid paging on large datasets, if possible. All such attempts to conserve
memory are disabled by setting --memory_usage=0.

Rank Approximate Nearest Neighbors

Rank approximation is a powerful means of finding approximate nearest neighbors that aims to preserve the
meaning of results better than similar methods that approximate by distance. It guarantees that, with high
probability, found neighbors have a rank error that is less than a specified percentage of the dataset. For instance,
one might use:
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# skytree-server nnplus \

--k_neighbors 10 \

--rank_error_tol 0.05 \

--rank_error_prob 0.90 \

--references_in random_100kx6.st \

--indices_out neighbors \

--distances_out distances

This will find 10 neighbors, each with a 90% chance of having an actual rank that differs from 10 by less than 5% of
the data. In this case, 5% of the data is 5000 points; for faster operation, this number should be a good deal greater
than the number of neighbors sought.

This form of approximation is preferable to distance-based approximations because nearest neighbors and
neighbors with very high rank may nonetheless have very similar distances, especially in high-dimensional datasets.

Alpha-Beta Approximation

Alpha-beta approximation is another form of nearest neighbor approximation. It is designed to assist in cases where
dimensionality is high but the (unknown) intrinsic dimensionality of the data is less extreme. The --alpha argument,
or fidelity, must be set to a small percentage while the --beta argument, or restarts, should be set to a small integer:

# skytree-server nnplus \

--k_neighbors 10 \

--alpha 0.2 \

--beta 5 \

--references_in random_100kx6.st \

--indices_out neighbors \

--distances_out distances

For moderate dimensionalities (around 30), values near --alpha=0.20 are reasonable, while values like
--alpha=0.05 or less are better for higher-dimensional data (100-1000 or more). Values such as --beta=5 are
appropriate for all dimensionalities. Larger --alpha and --beta will improve accuracy somewhat, though smaller
values are key for speed.

Alpha-beta approximation can be used in conjunction with rank approximation.

Bichromatic Nearest Neighbors

The all-k-nearest-neighbors search performed when --queries_in are omitted, where reference points seek
neighbors other than themselves, is sometimes also called monochromatic nearest neighbors. On the other hand, if
one does provide --queries_in, nnplus will find nearest neighbors from the reference set for each point in the
given query set. This is called a bichromatic nearest neighbors search:

# skytree-server nnplus \

--k_neighbors 10 \

--references_in random_100kx6.st \

--queries_in random_1kx6.st \

--indices_out neighbors \

--distances_out distances

Bichromatic nearest neighbors may be used in conjunction with either or both of rank approximation and alpha-beta
approximation. Another option of potential interest is --algorithm=fast. While by default this option is set to
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--algorithm=fastest, our “fastest” method is best calibrated to handle situations when both the query set and the
reference set are large (e.g. when they are the same). The --algorithm=fast setting may sometimes prove faster in
situations when the dataset provided in --queries_in is much smaller than that given by --references_in:

# skytree-server nnplus \

--k_neighbors 10 \

--references_in random_100kx6.st \

--queries_in random_1kx6.st \

--indices_out neighbors \

--distances_out distances \

--algorithm fast

Kernel Density Estimation

Estimating a probability density function is a fundamental task in statistical inference. A probability density function
of a continuous random variable describes the relative likelihood of the variable at each point in the observation
space. In general, a point with a low probability density represents a rare event, which in some cases corresponds to
an outlier. The probability density of a point can also be used to decide if it belongs to a certain class of points.

The Skytree Server Kernel Density Estimation (KDE) method uses state-of-the-art algorithms, data structures and
computational techniques to reduce computational complexity achieving many orders of magnitude speedup. It also
offers several important features:

• Fast computation of KDE for big query and reference datasets

• Support for Gaussian and Epanechnikov kernels

• Approximate computation of KDE with deterministic error bounds

Overview

Kernel Density Estimation (KDE) is the most widely used and studied nonparametric density estimation method. The
“model” is the reference dataset R = {r
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, · · · , r

m
}, containing the reference points rj∈Rd. In addition, define a local

kernel function Kh(·) to be centered upon each reference point, and its scale parameter h (the bandwidth). The
common choices for kernels include the Gaussian:
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We are given the query dataset Q = {q
1
, · · · , qn}, which contains points qi ∈ Rd whose densities we want to predict.

The density estimate at the i-th query point is:
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where ||qi - rj|| denotes the Euclidean distance between the i-th query point q
i
and the j-th reference point r

j
, d the

dimensionality of the data, |R| the size of the reference dataset, and ∈V K z dz= ∫ ( )d h z R h, d a normalizing constant
depending on d and h.
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To summarize:

1. Input: The set of reference points (observation points), the set of query points for which the probability densities
need to be predicted, and the bandwidth value h

2. Output: The density estimates for each query point, f q^ ( )
i

A histogram, for example, can be seen as a kernel density estimator for which the kernel is a histogram bin and the
bandwidth is the bin width.

Note that the kernel density estimator produces density estimates from a “smoothed” version of the underlying
probability density function; this is due to the effects of the local kernel function centered at each reference point.
Nevertheless with no assumptions on the true underlying distribution, given only that h→ 0, |R|h→ ∞, and some mild
conditions on K(·), it can be shown that f x f x dx∫ ^ ( )− ( ) | → 0

h as |R| → ∞ with probability 1. In other words, as

more data are observed and the bandwidth shrinks, the estimate converges to the true probability density.

Figure 1: One-dimensional kernel density estimation example

In the above image, there are six Gaussians of bandwidth 0.5 centered at x = −2.1,−1.3,−0.5, 1.9, 5.1, 6.2. The KDE
estimate at the given x is obtained by dividing the contributions of each of the Gaussians by the number of them that
are present, which is six. (Image courtesy wikipedia.)

Choosing the Right Bandwidth

In order to obtain accurate predictions for each query point qi ϵ Q, it is important to choose the correct bandwidth h.
Too large a bandwidth, and predicted densities will be over-smoothed. Too small a bandwidth will result in over-
fitting. Instead, we need to find the asymptotically optimal bandwidth h* for the given reference dataset R.

There are two main types of cross-validation methods for selecting the optimal bandwidth. Cross-validation methods
use the reference dataset as queries, effectively setting Q = R.

1. Likelihood cross-validation minimizes the Kullback-Liebler divergence ∫ p x p x f x dx( ) log( ( ) / ^ ( )) ,
h

yielding the score

∈
ΣCV h f r( ) =

^
( ) ,LK R r R h j j

1

, −j
log where the −j subscript denotes an estimate using all |R| points except the j-th.

The bandwidth h *CV
LK

that maximizes CVLK(h) is an asymptotically optimal bandwidth in the likelihood cross-
validation sense.

2. Least-squares cross-validation instead minimizes the integrated squared error ∫ f x p x dx(^ ( ) − ( )) ,
h

2 yielding the

score ∈ΣCV h f r f r( ) = (
^

( ) − 2
^

( )).LS R r R h j j h j j
1

2 , − , −j Note that the first term in the summation, ⋅f
^

( ) ,
h j2 −

is
evaluated using the convolution of the kernel with itself Kh(·) * Kh(·). For the Gaussian kernel with bandwidth of h,
the convolution kernel Kh(·) * Kh(·) is the Gaussian kernel with bandwidth of h2

A simple optimization for choosing the optimal bandwidth is to perform a grid search of log-scaled values. Typically,
we start from a very large bandwidth value h

over
as the upper bound and start decreasing the value until the

minimum threshold is reached. For example, the upper bound can be chosen to be half of the diagonal length of the
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bounding box of the reference set. The minimum threshold is chosen to be five orders of magnitude below this over-
smoothing bandwidth (that is, 10-5h

over
). For the likelihood cross-validation, we choose the bandwidth

∈h h h* [10 , ]CV over over

−5

LK
that maximizes the likelihood score. For the least-squares cross-validation, we choose the

bandwidth ∈h h h* [10 , ]CV over over

−5

LS
that minimizes the least-squares score.

Note that both cross-validation scores require |R| = N density estimates, each of which is based on N−1 points. This
results in a brute-force computational cost that scales quadratically (that is O(N2)). Furthermore, nonparametric
methods require a large number of reference points for convergence to the true underlying distribution. This has
prevented many practitioners from applying nonparametric methods for function estimation.

Usage Examples

Run the following command to see the options available for KDE:

# skytree-server kde --help

You can also refer to Kernel Density Estimation Options (page 275) in the Command Reference Appendix for
information on the available options.

A Simple Example

Run the skytree-server KDE module with the following arguments to find kernel density estimates on a set of
points:

# skytree-server kde \

--references_in random_1kx6.st \

--kernel gaussian \

--bandwidth 0.1 \

--relative_error 0.1

This command will not output a file with the densities unless you also specify the --densities_out option. Note
that we only provided --references_in and not the --queries_in option. When you don’t specify --queries_
in, then the program works in leave-one-out mode, where every point of the reference set is treated as a query point
and its density is computed by excluding the contribution of the point itself.

Bichromatic KDE

As a note, when the reference and the query set are the same, KDE is said to be monochromatic. If they are different,
then it is called bichromatic.

In this case we provide the same file for --references_in and --queries_in. Therefore, the algorithm will treat
the query points as if they were distinct and not perform leave-one-out estimation. Density estimates will thus include
the self contributions of the points, but otherwise be the same.

# skytree-server kde \

--references_in random_1kx6.st \

--queries_in random_1kx6.st \

--kernel gaussian \

--bandwidth 0.1 \
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--relative_error 0.1

Gaussian and Epanechnikov Kernels

Because the Gaussian kernel has infinitely long (though very low-valued) tails, setting --relative_error=0 will be
too slow as computation-accelerating prunes are made impossible. On the other hand, the Epanechnikov kernel has
finite support and as such can be used for fast computation of exact KDE:

# skytree-server kde \

--references_in random_1kx6.st \

--kernel epan \

--bandwidth 0.22361 \

--relative_error 0

Bandwidths have different scales for Gaussian and Epanechnikov kernels. As a rule of thumb, one may multiply a
Gaussian bandwidth by 5 (or, more simply, by 2) to obtain a similarly behaving Epanechnikov bandwidth. Different
kernels will tend to yield different statistical performance, though this difference quickly becomes insignificant as the
dataset size grows.

Fast Singular Value Decomposition

The Singular Value Decomposition (SVD) is a fundamental linear algebraic operation whose abundant useful
properties have placed it at the computational center of many methods in machine learning and related fields.
Principal component analysis (PCA) and its kernel nonlinear variants are prominent examples, and countless other
instances are found in manifold and metric learning, clustering, natural language processing/search, collaborative
filtering, bioinformatics and more.

Notwithstanding the utility of the SVD, it is critically bottle-necked by a computational complexity that can render it
impractical on massive datasets. Yet massive datasets are increasingly common in applications, many of which
require real-time responsiveness. Such applications could use SVD-based methods more liberally if the SVD were not
so slow to compute. The SVD module has accelerated methods with automatic relative error control.

Overview

Assume we are given the input matrix A∈ R m x n. Then there exists a factorization of the form:

A =UΣV T,

where U∈ R m x k is a matrix whose columns form an orthonormal basis spanning the columns of A, V∈ R n x k is a
matrix with columns forming an orthonormal basis spanning the rows of A, and Σ = diag(σ1, ..., σk) ∈ R k x k are the
singular values. To preserve equality in the above, kmust equal the full rank of A; however useful reduced-
dimensionality projections of the data are obtained by specifying smaller values of k. Values σ1, ..., σk monotonically
decrease in magnitude and represent the amount of the data’s overall covariance captured by their corresponding
columns of U and V.

To summarize, the inputs and the outputs to the method are:

1. Input: A matrix A∈ R m x n and the desired rank k

2. Output: Reduced-rank factors of A, U∈ R m x k, V∈ R n x k, and Σ = diag(σ1, ..., σk) ∈ R k x k, such that A ≈UΣV T
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Choosing the Parameters in SVD

Choosing the rank k is often done ad hoc based on a prior domain knowledge. PCA is usually used for visualization
purposes, and only two or three components are retained in most cases. Another way is to specify the amount of
covariance to capture (for example, 90%) and to choose the minimum number k that achieves such a level.

Usage Examples

Run the following command to see the options available for SVD.

# skytree-server svd --help

You can also refer to Singular Value Decomposition Options (page 325) in the Command Reference Appendix for
information on the available options.

A Simple Example

Run the skytree-server SVD module with the following arguments:

# skytree-server svd \

--references_in pm_100x40.st \

--lsv_out lsv_out \

--rsv_out rsv_out \

--sv_out sv_out

This example will run SVD on the dataset contained in the file “pm_100x40.st”. The left and transposed right
singular vectors will be output to files called “lsv_out” and “rsv_out” respectively. The singular values will be
output to the file “sv_out”.

The above example demonstrates that the fast SVD algorithm does not always output enough principal components
to form a full-rank reconstruction of the input matrix. Instead, it only outputs the amount necessary to achieve the
target relative error, which defaults to 10%. We can obtain more principal components by reducing the amount of
relative error:

# skytree-server svd \

--references_in pm_100x40.st \

--lsv_out lsv_out \

--rsv_out rsv_out \

--sv_out sv_out \

--relative_error 0.001

This now produces 5 principal components. We can restrict the emitted result to only the first 3 by additionally
providing --svd_rank:
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Figure 2: Orthogonal directions called by principal directions

In this example, principal component analysis is used to discover two orthogonal directions called principal
directions, the first of which captures the bulk of the data’s covariance. (Image courtesy of Wikipedia.)

# skytree-server svd \

--references_in pm_100x40.st \

--relative_error 0.001 \

--lsv_out lsv_out \

--rsv_out rsv_out \

--sv_out sv_out \

--svd_rank 3

k-means

Clustering is a form of unsupervised learning that tries to find structures in the data without using any labels or
target values. Clustering partitions a set of observations into separate groupings such that an observation in a given
group is more similar to another observation in the same group than to another observation in a different group. k-
means is very popular in retail and customer segmentation [zheng-tobacco], [reynolds1999relationship] and for
outlier detection (e.g., in fraud detection/prevention).

Skytree Server has an accelerated version of Lloyd’s algorithm and supports the following features:

• Efficient, fast algorithm scales to large numbers of points and clusters

• Automatic determination of optimal number of clusters
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• Smart initialization of cluster centroids for faster convergence

• The progressive computation of k-means. The k-means algorithm is an inherently iterative method, which can be
made to terminate after a fixed number of iterations

• Multiple restarts to avoid local minima in the produced clusters

• Cross-validation and Bayesian Information Criterion to find the optimal number of clusters

Note: k-means only accepts real-valued data. Because of this, categorical data must be horizontalized.

Overview

Clustering methods require a notion of similarity. The canonical form of k-means defines the similarity measure using
the Euclidean metric. For x, y, z ϵ Rd, x is more similar to y than to z if and only if || x - y || ≤ || x - z ||. Given a set of
observations, X = (x

1
, x

2
, ... xN), where each observation xi∈ Rd, then k-means clustering aims to partition the N

observations into k sets (k < N) S = {S
1
, S

2
, ... Sk} with the objective being to minimize the squared Euclidean distance

between points in any subset and their centers of mass:

P P

∈

∑ ∑ x µargmin −
S
i

n

x S

j i
=1

2

j i

where μi is the mean of Si.

1. Input: A set of N reference points

2. Output: The coordinates of the centers of each of the k clusters indexed from 0 to k − 1 and the membership
vector of each point where the i-th component denotes the cluster index to which the point belongs

Note: In this section, “mean”, “centroid”, and “center” are used interchangeably to mean the geometric center of a
set of points. For a set of points (x

1
, x

2
, ... xN), xi∈ Rd, the "mean", "centroid", or "center" of the set is given by:

∑µ X=
N
i

n

i
1

=1

A Simple Algorithm for a Fixed Number of Clusters

The naive version of the k-means algorithm (sometimes referred to as “Lloyd’s algorithm”) is the following:

1. Initialization Step: Choose k points in the geometrical space to represent the starting k cluster means. These are
called the kmeans.

2. Assignment Step: Assign each point in the data to the closest mean. This step involves calculating the distance
from each input point in the data to each of the kmeans and thus has O(k · N) complexity where N is the size of
the input dataset.

3. Update Step: Calculate the new set of kmeans as that of the center of mass of observations for their respective
cluster.

4. Termination Step: If the new means are the same as the old means, i.e., nothing changed, terminate. Otherwise go
to step 2.
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Note: Numerical round-off errors can cause some of the k distances between a given point and the means of the
k2 clusters to have the same value. In this case, we employ a simple tie-breaking rule to assign the point to the
cluster with the lowest cluster index to facilitate convergence every time.

Determine the Number of Clusters

Choosing the right number of clusters is a challenge in k-means, which leads to the number of clusters often being
chosen in an ad hoc manner based on prior knowledge.

Skytree Server uses a method based on the Bayesian Information Criterion (BIC) to automatically choose the number
of clusters k.

The BIC is defined as BIC C X L X C N( | ) = ( | ) − log ,
p

2
where L( X | C ) is the log-likelihood of the dataset according

to the cluster model C, p = k (d+1) is the number of parameters with d the dimensionality of the dataset and k the
number of clusters. N is the number of points in the dataset.

The cluster model that maximizes the BIC score is chosen.

Usage Examples

Run the following command to see the options available for kmeans:

# skytree-server kmeans --help

You can also refer to k-means Options (page 277) in the Command Reference Appendix for information on the
available options.

A Simple Example

Our first example creates clusters for 100,000 randomly generated 6-dimensional points from file random_
100kx6.st. An output file, centroids.csv, is created that contains the centroid positions for the number of
clusters specified (4 in this case). Another optional output file, assignments.csv, contains the cluster memberships
for each point in the input datasets. Typical results are shown in the image that follows.

# skytree-server kmeans \

--references_in random_100kx6.st \

--centroids_out centroids.csv \

--k_clusters 4 \

--memberships_out assignments.csv
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Figure 3: k-means clustering

The above images shows a visualization of k-means clustering for k=50 on a 4-dimensional astronomical dataset
(Sloan Digital Sky Survey) consisting of 100k points. The first 3 dimensions are shown. Colors indicate cluster
membership, and the points are connected to their associated cluster centroid.

The distortions (the squared Euclidean distance to the closest centroid) for each point in the input set can be
obtained via the --distortions_out option as follows:

# skytree-server kmeans \

--references_in random_100kx6.st \

--centroids_out centroids.csv \

--k_clusters 4 \

--memberships_out assignments.csv \

--distortions_out distortions.csv

The algorithm to compute clusters can be specified by the --algorithm option. By default, we use a fast exact
heuristic method on top of the traditional Lloyd’s algorithm (specified by --algorithm=fast). However, the original
Lloyd’s algorithm can be used as follows:

# skytree-server kmeans \

--references_in random_100kx6.st \

--centroids_out centroids.csv \

--k_clusters 4 \

--algorithm lloyds \

--memberships_out assignments.csv

The Lloyd’s algorithm and the fast exact heuristic method can be run in distributed mode. (See k-means (page 176) for
more details.)
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k-means with Sparse Data

The kmeans module can be seamlessly applied to sparse data as demonstrated with the following 12419-
dimensional sparse dataset:

# skytree-server kmeans \

--references_in docword_nips.st \

--centroids_out centroids.csv \

--k_clusters 4 \

--memberships_out assignments.csv

k-means with Online Pre-Processing

It has been proven that online k-means can quickly converge closely to the solution. Here we show an example of
online k-means:

# skytree-server kmeans \

--references_in sdss.train.st \

--k_clusters 10 \

--centroids_out centroids.csv \

--algorithm online_fast

The algorithm runs for one epoch (one pass over the dataset) in online mode and then it continues in batch mode.
You can specify more epochs with, e.g. --epochs=2 and restrict the number of iterations in batch mode with, e.g.
--iterations=1. Notice that if you set it to --iterations=0, it will still run in batch mode once. This behavior is
also obtained by specifying --algorithm=online.

Note: All online algorithms assume that data points are independent and identically distributed (i.i.d.), or
presented in random order. In the dataset we provided, two classes of points are stored sequentially in chunks.
To sidestep this problem, the order of the input data is automatically randomized by default.

If you know that your data points are i.i.d., then you can turn off the randomization as below.

# skytree-server kmeans \

--references_in sdss.train.st \

--k_clusters 10 \

--centroids_out centroids.csv \

--algorithm online_fast \

--randomize false

Often, with randomization enabled, online k-means tends to produce better initial distortions, and the following batch
k-means requires fewer iterations to converge. Note that this observation may not always be true since, randomized
input order or not, the initial cluster centers are always assigned randomly, and some starting positions may lead to
faster convergence.

In short, only if you know that your input data is i.i.d. (or already in random order) should you use
--randomize=false.
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Initialization of the Centroids with k-means++

k-means results are sensitive to the selection of the initial centroids. The default option is to pick random points from
the reference dataset. The kmeans++ centroid initialization option uses an advanced algorithm to pick the centroids.
This will take some extra time, but it leads to faster convergence. The initialization scheme can be specified by the
--initialization option (--initialization=random by default) as follows:

# skytree-server kmeans \

--references_in sdss.train.st \

--centroids_out centroids.csv \

--k_clusters 10 \

--memberships_out assignments.csv \

--initialization kmeans++

k-means with Automatic Multiple Restarts

When choosing random initial centroids from the reference points, it is best to restart kmeans several times and pick
the best set of resulting centroids. This can be done automatically using the --n_restarts option as follows:

# skytree-server kmeans \

--references_in sdss.train.st \

--centroids_out centroids1.csv \

--k_clusters 10 \

--memberships_out assignments.csv \

--n_restarts 10

The set of centroids returned is the one with the lowest distortion.

Finding the Optimal Number of Clusters

We seldom know the number of clusters in a given dataset. Skytree Server provides a method to automatically
determine the best value for k. For this you must provide a minimum and maximum number of clusters acceptable.
The algorithms will search for the optimal k value between these two limits with a default step size of 1. For faster
scanning, you can specify a larger step size for k and/or limit the number of iterations for each value of k. You can
quickly scan for the optimal number of clusters kwith the following:

# skytree-server kmeans \

--references_in 3gaussians.st \

--centroids_out centroids.csv \

--iterations 1000 \

--k_min 2 \

--k_max 10 \

--k_step 1

For these parameters, the optimal number of centroids is found to be 3. This is expected, since the input points are
sampled from three Gaussian blobs. For more realistic cases, you could do several scans with increasing accuracy.
(e.g., Start first with large values for --k_max and --k_step and a small number of iterations with the
--iterations option, and when a first candidate for k is found, you can update the range for k in combination with
a smaller value of --k_step, no limit on the number of iterations and a larger number of restarts specified by --n_
restarts.)

46 | Skytree Server User Guide Confidential Chapter 4 Discovery



A fraction of the dataset is held out as the validation set during the search for the optimal number of clusters. This
fraction defaults to 0.2 but can be specified with the --percentage_hold_out options as follows:

# skytree-server kmeans \

--references_in 3gaussians.st \

--centroids_out centroids.csv \

--iterations 1000 \

--k_min 2 \

--k_max 10 \

--k_step 1 \

--percentage_hold_out 0.25

Finding the Cluster Memberships for Unseen Points

Once you have used k-means to find the cluster centroids for a given set of reference points, you might want to find
the cluster memberships for a given set of query points (typically, a different set of points). The kmeans module can
be used for that purpose with the --run_mode option. By default, --run_mode=train, resulting in k-means
clustering. Membership assignment (and distortion computation) on a different set of points can be achieved by
running k-means with --run_mode=eval and the --queries_in option as follows:

# skytree-server kmeans \

--centroids_in centroids1.csv \

--queries_in sdss.test.st \

--memberships_out assignments.csv \

--distortions_out distortions.csv \

--run_mode eval

Coreset Construction for k-means

A coreset refers to a summary of the data that can be used to approximate the entire dataset for clustering purposes.
Using distributed coreset construction, you can create a summary of a dataset to use with future kmeans clustering.
The cluster structure in the dataset is preserved with a much smaller weighted dataset.

Use --run_mode=coreset tells kmeans to run in coreset mode. The --coreset_out option creates a summary of a
dataset to use for future kmeans clustering. This output file includes 5 meta columns: (0) label, (1) target, (2) id, (3)
point weight, and (4) score weight. Note that in this output, the points from the table retrain their IDs. Generated
points, however, will have an ID of -1, indicating that they are not actual points in the dataset.

You can also use the --coreset_size option to define the size of the output coreset. This size is specified in terms
of a fraction of the actual file size. When kmeans runs in coreset mode, this value defaults to 0.01 (corresponding to
1% of the size of the original dataset).

# skytree-server kmeans \

--references_in sdss.train.st \

--coreset_out cores \

--coreset_size 0.05 \

--run_mode coreset
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The Two-Point Correlation

The two-point correlation function is a special case of the n-point correlation function, which serves to measure the
fractal dimension of a dataset. These functions are commonly used to test whether two different datasets are derived
from related distributions. For instance, in astrophysics, researchers can test whether simulated galaxy evolution
produces distributions of galaxies similar to those of observed by testing whether their computed n-point correlation
values are similar.

Skytree Server Two-Point Correlation uses state-of-the-art algorithms, data structures and computational techniques
to reduce computational complexity achieving many orders of magnitude speedup. It offers several important
features:

• Fast computation of the 2-point correlation, including for large datasets.

• Monochromatic (dataset vs. itself) and bichromatic (two datasets) computation.

It also offers options for matchers with lower-bound distance 0 and variable upper-bound distance, or radius. This
may be evaluated monochromatically—between a dataset and itself—or bichromatically, where pairs represent points
from either of two input sets. Bichromatic computation is useful, for instance, when breaking up large computations
into smaller, component problems.

Overview

Each member of the family of n-point correlation functions takes as input a dataset and produces as output an
integer. In the general case, member functions consider all size N subsets of the input dataset and count those
subsets that satisfy a matcher condition,M. For an input set R, this is expressed:

c = |{ Rn⊂ R: | Rn | = N, M (Rn) = true }|

Matcher conditions often consider measures such as the distances between points and the angles formed between
them, and may reject subsets of points when some of them are too near each other, are too distant, or form very sharp
or very wide angles.

The Two-Point Correlation

In the special case that n=2, matchers simply test whether each unique pair of points is between a given minimum
and maximum distance of each other. This may be written as:

∈ ∈

∑ ∑c I h d r r h= ( ≤ ( , ) ≤ )

r R r R

i jlo hi

i j

where I is the indicator function, which returns 1 whenever its argument condition is true.

Correlation Profiles

As previously mentioned, the n-point correlation functions are commonly used to test whether two datasets are
derived from related distributions. However, any single n-point correlation function—i.e., any particular matcher—may
prove inadequate for this purpose. Accordingly, it is common practice to measure a dataset’s correlation profile. This is
a graph with correlation values along the y-axis and a spread of matchers along the x-axis. For instance, in the
2-point correlation, the x-axis may represent matcher conditions with lower-bound distance hlo = 0 and upper-bound
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distance hhi = x. Similar correlation profiles are a much stronger indication that the two datasets are derived from
related distributions than similar correlation values in isolation.

Usage Examples

Run the following command to see the options available for two-point correlation:

# skytree-server two_pt --help

You can also refer to Two-Point Correlation Options (page 339) in the Command Reference Appendix for information on
the available options.

A Simple Example

You can compute the 2-point correlation with radius 1 using the following syntax:

# skytree-server two_pt \

--references_in adult_train_transformed_stratified_10k.st \

--radius 1

We can then compare this to the correlation value computed for a different sample from the same dataset:

# skytree-server two_pt \

--references_in adult_test_transformed_stratified_6k.st \

--radius 1

(Note that we must normalize the returned values by the dataset size in order to properly compare them.)

Finally, if we sum the above two results along with the result of the following, we arrive at the 2-point correlation of
the union of the two sets:

# skytree-server two_pt \

--references_in adult_train_transformed_stratified_10k.st \

--queries_in adult_test_transformed_stratified_6k.st \

--radius 1
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Chapter 5 Prediction

Skytree Server Prediction is a collection of supervised learning modules that solve regression and classification
problems. Specifically, Prediction is comprised of the following machine learning methods:

• Nearest Neighbors Classification

• Ensemble Learning methods (Gradient Boosting Trees and Random Decision Forests)

• AutoModel

• Support Vector Machines

• Metric Learning

• Logistic Regression

• Linear Regression

• Generalized Linear Models - Classification and Regression

Each is represented by their own unique module name. Note that the modules that end with the letter "r" signify
regression modules, while the rest of the modules are classification modules.

Model Training and Model Validation

All Skytree Server modules require a training dataset to train a model. This is done through the --training_data_
in and --training_labels_in options for classification, and the --training_targets_in option for
regression. A further set of module specific parameters can be used to train the model. All Skytree Server modules
allow for model validation and parameter selection through (i) cross-validation (specified through --num_folds), (ii)
a holdout set (specified through --holdout_ratio, a number between 0 and 1), and (iii) a separate tuning file
(specified through --tuning_data_in and --tuning_labels_in/ --tuning_targets_in).

Model/Result Output

All Skytree Server modules can output the model in binary form by specifying the output filename through the
--model_out option. When a file is specified through the option --testing_in, Skytree Server also allows several
different options to write out the results obtained on the testing dataset in different files through the options
--predicted_labels_out and --predicted_probabilities_out (for classification) and --predicted_

targets_out (for regression). These output files will have predictions obtained for the testing dataset. The model
used for testing is the model that has the parameters that produce the best results during model validation. This
model is then trained on the entire training dataset and then used for testing purposes.
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Model Evaluation

Evaluating the predictions produced as outputs of these supervised learning modules can be done using the score
module. (See Scoring (page 151) for more information.)

AutoModel

The AutoModel module tunes over a large set of algorithms and parameter to obtain the best performing model.
Optionally, it allows the user to restrict the space to search in. (See AutoModel Module (page 103) for more
information.)

Advanced Nearest Neighbor Methods

Advanced Nearest Neighbor Methods is a collection term for Nearest Neighbor Classification (nnc) and Weighted
Nearest Neighbor Classification (wnnc). Both nnc and wnnc allow you to perform binary classification with various
model validating options.

Refer to the following sections:

• Nearest Neighbors Classification (page 52)

• Weighted Nearest Neighbors Classification (page 54)

Nearest Neighbors Classification

Nearest neighbors classification first performs a k nearest neighbors search on points from a labeled reference set,
and then classifies query points according the most common label amongst their found neighbors. As nearest
neighbors classification is clearly influenced by nearest neighbors search, all options available for nnplus are also
available for nnc. In addition, there are options to perform classification for multiple values of k simultaneously as
well as to control the output of various scores.

The examples will use the datasets distributed along with the documentation.

Again, run the following to see all available options:

# skytree-server nnc --help

You can also refer to Nearest Neighbors Classification Options (page 291) in the Command Reference Appendix for
information on the available options.

A Simple Example

Run the following to perform nearest neighbors classification:

# skytree-server nnc \

--k_neighbors 20 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--probabilities_out probs.nnc \
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--scores_out scores.nnc \

--labels_out labels.nnc

This produces two scores files, scores.nnc.class1 and scores.nnc.class-1 (for classes 1 and -1), two class
probabilities files, probs.nnc.class1 and probs.nnc.class-1, but only one file for labels, labels.nnc. The file
names’ class suffixes will match the class labels provided by --training_labels_in.

The scores files contain the counts of neighbors found from either class. In the case of nnc (without class weights),
the class probabilities are equal to scores divided by k.

Modified Class Weights

To accommodate situations where training sets are formed by stratified sampling of either class, the
--classweight argument can be used to artificially inflate the impact of one class or the other. This is used as
follows:

# skytree-server nnc \

--k_neighbors 20 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--probabilities_out probabilities.nnc \

--labels_out labels.nnc \

--classweight 10 \

--classweight 1

The --classweight parameter must be repeated for each class in --training_labels_in. Its values are
assigned according to the numerical order of the class labels. In this case, the --classweight=10 is for class -1
while class 1 still has --classweight=1. Here, we use --probabilities_out instead of --scores_out because,
while the scores for class 1 won’t change, its probability results will. More details regarding the usage of class
weights in Skytree Server is presented in Class Weights (page 164).

Leave-One-Out Cross Validation

It is possible to call nnc without --testing_in to perform leave-one-out cross-validation. Leave-one-out cross-
validation finds classifications for each training point considering all training data points other than itself:

# skytree-server nnc \

--k_neighbors 20 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels

After classification, nnc computes classification accuracy, probability-based Gini index, and a number of other
measures such as Precision/Recall, F-Score and Capture Deviation.

Tuning Over Multiple Values of K

nnc permits simultaneous computation to assist with and accelerate the comparison of scores and/or classifications
for different values of k. For example, try:
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# skytree-server nnc \

--k_neighbors 5:5:25 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels

or

# skytree-server nnc \

--k_neighbors 5,10,15,20,25 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels

Both (equivalent) commands will perform leave-one-out cross-validation tuning for each value of k in the set {5, 10,
15, 20, 25}. Finding different classification results simultaneously is much faster than performing separate runs of k
nearest neighbors classification.

It is possible to specify a separate tuning set with the --tuning_in and --tuning_labels_in options.

Acceleration

All accelerating options available to nnplus can also be used with any form of nearest neighbors classification. See
Compressed Computation (page 34), Rank Approximate Nearest Neighbors (page 34), and Alpha-Beta Approximation (page
35) for additional details. Also, keep in mind that --algorigthm=fast can sometimes be faster for smaller query
sets.

Weighted Nearest Neighbors Classification

Weighted Nearest Neighbors considers neighbor distances in addition to their labels, thereby weighting nearer
neighbors more than those that are farther away. In addition to the nnc options, wnnc includes additional options
that allow the weighing of points based on distance. See examples for further details.

The following command describes all available wnnc options:

# skytree-server wnnc --help

You can also refer to Weighted Nearest Neighbors Classification Options (page 340) in the Command Reference
Appendix for information on the available options.

A Simple Example

The following will perform weighted nearest neighbors classification:

# skytree-server wnnc \

--k_neighbors 20 \

--dist_weight 1/r \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--scores_out scores \

--probabilities_out probabilities \
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--labels_out labels

As with nnc, this produces two scores files named for either class and one labels file. The scores files now contain
sums of the values returned by the distance weight function as applied to each found neighbor from the
corresponding class. There are two probabilities file produced, one for each class. This formula shows how the
probabilities are calculated for class 1. The probability of a point belonging to class -1 is computed by subtracting
the probability of the point belonging class 1 from 1.

P q( ) = ,
q

q q

score ( )

score ( ) + score ( )

1

1 −1

which no longer has a denominator necessarily equal to k.

Distance Weight Functions

The previous section explicitly uses --dist_weight=1/r, the default distance weight function. Also available is
1/r^2 as well as both the Gaussian (gaussian and fixed_gaussian) and Epanechnikov (epan and fixed_epan)
kernels, e.g.:

# skytree-server wnnc \

--k_neighbors 20 \

--dist_weight 1/r^2 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--scores_out scores \

--probabilities_out probabilities \

--labels_out labels

All six distance weight functions can yield different classification behavior. The 1/r^2 function tends to favor near
points even more so than 1/r. On the other hand, the Gaussian and Epanechnikov kernels, defined

K d e K d( ) = and ( ) = max{0, 1− ( ) }h h

d

h

− ( )
2d

h

1

2

2

respectively (un-normalized), distribute values more evenly over points of low to intermediate distance. The fixed_
gaussian and fixed_epan weight functions have user-specifiable fixed bandwidths, while the gaussian and epan

weight functions use bandwidths that are relative to each query point’s k-th neighbor distance.

Kernel Bandwidths

The Gaussian and Epanechnikov kernels are parametrized by a bandwidth h. This parameter controls kernel
smoothness, with smaller values resulting in kernels that drop to 0 more quickly. For wnnc, kernel bandwidths can be
set as ratios of the k-th nearest neighbor distance or are fixed (in the case of the fixed_ kernels):

# skytree-server wnnc \

--k_neighbors 20 \

--dist_weight epan \

--bandwidth 0.75 \

--bandwidth 1.10 \

--training_in sdss.train.st \
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--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--scores_out scores \

--probabilities_out probabilities \

--labels_out labels

Like --classweight, the --bandwidth parameter must be repeated for each class and its values are assigned in
the numerical order of the class labels. Further, Gaussian kernel bandwidths are always shrunk an additional factor
of 5 , which results in behavior more similar to the Epanechnikov kernel.

If omitted, the default --bandwidth scaling factor is 1. In practice, however, bandwidth optimization is critical for
maximizing accuracy metrics when using the Gaussian and Epanechnikov kernels.

Mitigating Class Imbalance

Extreme imbalances in class sizes can limit the effectiveness of conventional nearest neighbors classifiers. Problems
arise when (understandably) weak signals from the rare class are truncated to no signal at all, leading to
uninformative probabilities of exactly zero. To help mitigate this, Skytree Server implements the --imbalance option,
which forces consideration of the rare class even for low values of k.

The --imbalance option in wnnc finds the k nearest neighbors from each class, and then weights their contributions
to the final probability according to the selected function of distance. Unweighted k-NN classification would
obviously always return equal class probabilities across the board in this context, but weighting by distance can
result in a comparatively small or large contribution from the equal numbers of found neighbors.

The overall effect is that --imbalance always returns a nonzero probability even for very rare classes. These
probabilities may always be very small, and as such, prediction may never label any points as belonging to the rare
class. Nonetheless, it becomes possible to compare points that have, e.g., a 2% chance and a 0.05% chance of being
members of the rare class, whereas both may have been predicted to have a 0% chance without the --imbalance
option. This allows for the formation of sets of rare class candidates when used in conjunction with the
--probability_threshold parameter, which defaults to 0.5 but can instead be configured down to, e.g., 0.01 in
order select all points that have a mildly heightened chance of being members of the rare class. In certain contexts,
--probability_threshold may be tuned automatically, such as with --classification_objective.

# skytree-server wnnc \

--k_neighbors 20 \

--dist_weight 1/r \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--scores_out scores \

--probabilities_out probabilities \

--labels_out labels \

--imbalance

Note that, though the SDSS dataset is not particularly unbalanced, the --imbalance option can still impact results.

Assymetric Values of K

When using --imbalance, it is possible to set different values of --k_neighbors for either class. This is again
accomplished by repeating the --k_neighbors parameter for each class in the numerical order of their labels:
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# skytree-server wnnc \

--k_neighbors 200 \

--k_neighbors 10 \

--dist_weight 1/r \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--scores_out scores \

--probabilities_out probabilities \

--labels_out labels \

--imbalance

This can be interpreted as finding at least 200 neighbors from class -1 and 10 neighbors from class 1.

Sampling

Upsampling or downsampling of the classes can help restore balance, and can be specified with the --sampling_
ratio option, given for each class:

# skytree-server wnnc \

--k_neighbors 20 \

--dist_weight 1/r \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--scores_out scores \

--probabilities_out probabilities \

--labels_out labels \

--imbalance \

--sampling_ratio 0.1 \

--sampling_ratio 2.4

The above example will downsample the negative class (label -1) by a factor of 10, and upsample the positive class
(label 1) by a factor of 2.4. There’s also an option to let the algorithm set the sampling ratios automatically to obtain
balance, with --sample_imbalance. Further, if --sample_imbalance is specified, then --imbalance_scale can
be used to scale both classes by an additional factor:

# skytree-server wnnc \

--k_neighbors 20 \

--k_neighbors 10 \

--dist_weight fixed_epan \

--bandwidth 0.2 \

--bandwidth 0.3 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--scores_out scores \

--probabilities_out probabilities \

--labels_out labels \

--imbalance \

--sample_imbalance \

--imbalance_scale 2

The above example would equalize the class sizes at a size of 2 times the original size of the smaller class.
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For all sampling, the option --sample_with_replacement can be set to on or off for sampling with or without
replacement.

Also note that sampling uses random number generators that can be seeded to obtain reproducible results, for
example:

[INFO] To reproduce, use --table_sampling_seed=1359937539.

Asymmetric values of kmay be used together with Tuning Over Multiple Values of K (page 53) by simply repeating --k_

neighbors options in like fashion. This emits results for all combinations of k for either class; some care is
warranted so as not to consume more storage than intended, as the number of such combinations can grow quickly.

Tuning with or without Leave-One-Out Cross Validation

It is possible to tune over multiple k-values and kernel bandwidths, in combination with all other parameters as
specified in the previous section, by providing --tuning_in and --tuning_labels_in if a tuning set is available.

The Prediction methods allow you to omit --tuning_in in order to perform leave-one-out cross validation on the
training data:

# skytree-server wnnc \

--k_neighbors 10:5:20 \

--k_neighbors 10,20,50 \

--dist_weight fixed_epan \

--bandwidth 0.1:0.1:0.2 \

--bandwidth 0.3:0.1:0.5 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--imbalance \

--sample_imbalance \

--imbalance_scale 2

The above command will tune over 54 parameter configurations and report parameter combinations that produce the
highest Gini, highest Gini to Capture Deviation ratio, highest F-Score, and highest Accuracy respectively. Refer to
Scoring (page 151) for more information about scoring.

Note that tuning and testing are not currently supported at the same time. Instead, the (tuning-related) input required
to reproduce a winning model is reported, for example for best Gini:

To reproduce the model, use ’--imbalance --k_neighbors=15 \

--k_neighbors=20 --bandwidth=0.2 --bandwidth=0.3 \

--probability_threshold=0.8208208919380429’

The optimal model can then be reproduced for testing as follows:

# skytree-server wnnc \

--k_neighbors 15 \

--k_neighbors 20 \

--dist_weight fixed_epan \

--bandwidth 0.2 \

--bandwidth 0.3 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--imbalance \
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--sample_imbalance \

--imbalance_scale 2 \

--probability_threshold 0.8208208919380429 \

--testing_in sdss.test.st \

--scores_out scores

Acceleration and Memory Usage Control

All of the performance-related options available to nnplus are available to wncc. See Compressed Computation (page
34), Rank Approximate Nearest Neighbors (page 34), and Alpha-Beta Approximation (page 35) for additional details.

Ensemble Learning Methods

The Skytree Server Ensemble Learning methods consist of implementations of the following methods for
classification and regression:

• Random Decision Forests (page 83)

• Gradient Boosted Trees (page 86)

• Random Decision Forest Regression (page 94)

• Gradient Boosted Trees Regression (page 96)

Introduction

Executing classification and regression with Ensemble methods typically involves the following steps:

1. Prepare: Identify the training and the test datasets and the ensemble learning method to apply.

2. Tune: Find the right parameters (number of trees, sampling ratios etc.) for the model using only the training data.

3. Test: Once finalized, apply the model to test data and obtain results (labels, probabilities, targets, etc.).

4. Score: Evaluate model performance on the test set using Gini, accuracy, F-score, yield, etc.

Using the Ensemble methods, steps 2 and 3 (tuning and testing) can be easily combined, if preferred.

Ensemble Module Interface

The Random Decision Forest (rdf|rdfr) and Gradient Boosted Trees (gbt|gbtr) modules share similar input
interfaces. For example, both modules have the same input data options, --training_in and --testing_in, and
the same model validation options, --num_folds and --holdout_ratio. Output and other options are also
consistent across both modules, but they differ in certain algorithm specific parameters. For example, --learning_
rate can be specified in gbt but not in rdf.

The examples that follow will use the notation [gbt|rdf] to signify that they can use either the rdf or gbt module,
with concepts remaining the same. Any example using features specific to one module will use only that module’s
name. Those examples will be in module specific sections.
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Input Interface File

Options to the ensemble modules can not only be passed via the command-line interface, but also via an input file (or
any combination).

For example, the following options:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--num_trees 100 \

--model_out model.simple

can also be specified from an input file, input, containing the following lines:

echo "training_in = income.data.st

training_labels_in = income.data.labels

num_trees = 100

model_out = model.simple" > input

The location of the input file is specified with the --input_file option:

# skytree-server [gbt|rdf] --input_file input

Input options can be read from the command-line and from an input file. The order of precedence is as follows:

1. Command-line

2. Input file

3. Input file [tunable] section (if applicable, see later section)

More examples are shown in later sections Tuning Parameter Specification via Input File (page 66) for GBT/RDF and
Tuning Parameter Specification via Input File (page 77) for GBTR/RDFR.

Classification with gbt and rdf

This first example illustrates how to build a simple model and save it to a file. In the following command we provide
the training data, training labels and the number of trees to build in the ensemble method. We then train the model
and save it.

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--num_trees 100 \

--model_out model.simple

The resulting model is stored in model.simple which is in binary format. Also, the only parameter needed to run the
ensemble method is the number of trees (all other parameters have default settings).

To load the model and apply it to a test set the following command may be run:
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# skytree-server [gbt|rdf] \

--model_in model.simple \

--testing_in income.test.st \

--probabilities_out probabilities.simple \

--labels_out labels.simple

The results for the test data are now in probabilities.simple and labels.simple. Now we can run the scoring
module to see what the accuracy of the generated model is in terms of Gini, classification accuracy, etc.

Now let’s combine the above 2 steps into a single step where we train the model, save it and apply it to the test set to
obtain probabilities and labels at the same time. This is done as follows:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--testing_in income.test.st \

--num_trees 100 \

--model_out model.simple \

--probabilities_out probabilities.simple \

--labels_out labels.simple

Handling Skewed Data

Often, the class distribution in the data is skewed, with far fewer points in one of the classes. To effectively classify
such data, the Ensemble modules incorporate automatic class sampling via two approaches described in the next
section.

Note: The dataset used in the next section, income.data.st, is not skewed and is used only for the purpose of
illustration.

Specifying the Sampling Ratio

The --sampling_ratio argument can be used to down-sample or up-sample each class separately, in order to build
a model which better accounts for the smaller class’ distribution. This has the effect of sampling for each tree in the
ensemble. Random Decision Forests by default sample the data up to a --sampling_ratio of 1. In the Gradient
Boosting Trees module sampling gives rise to the Stochastic Gradient Boosted Tree
(http://en.wikipedia.org/wiki/Gradient_boosting#Stochastic_gradient_boosting) method.

The effect of setting --sampling_ratio to different values is illustrated with a simple example. Let's assume our
dataset has 90 data points with the following distribution:

80 points are -1

10 points are +1

Also, let’s assume that the training has to occur with the minority class +1 up-sampled 2 times and the majority class
−1 down-sampled 4 times, thus effectively making the 2 classes have equal number of points in the sample. This is
easily achieved by using the --sampling_ratio argument as follows:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \
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--testing_in income.test.st \

--num_trees 100 \

--model_out model.sampled \

--sampling_ratio 0.25 \

--sampling_ratio 2 \

--probabilities_out probabilities.sampled \

--labels_out labels.sampled

Notes:

• Notice there are two --sampling_ratio arguments. The first argument value (0.25) is applied to the class with
-1 label and the second argument value is applied to the class with value +1.

• The default sampling method is sampling with replacement. To sample without replacement you may specify
--sample_with_replacement off. Keep in mind that up-sampling is then not possible. In this mode, all
sampling ratios must be > 0 and < 1.

• If only one --sampling_ratio argument is provided, both classes will be sampled in that ratio, i.e., it is the same
as providing the same argument value for --sampling_ratio for each class separately.

Imbalance Handling

Instead of specifying the --sampling_ratio, the --imbalance option can be used to automatically handle
imbalanced data and correct for its skewness. When the --imbalance option is used, the sampling ratio for both the
classes are set internally such that the sampling ratio assigned to the minority class is 1, and the sampling ratio
assigned to the majority class is calculated such that the final sample thus created has approximately the same
number of minority and majority classes.

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--testing_in income.test.st \

--num_trees 100 \

--model_out model.imbalance \

--imbalance \

--probabilities_out probabilities.imbalance \

--labels_out labels.imbalance

Note: The --imbalance option cannot be used together with the --sampling_ratio option.

In addition to the --imbalance option, a tunable --imbalance_scale option can also be provided. This option
causes more data to be used when set to a value > 1 or less data when set to a value < 1.

Modified Class Weights

To accommodate situations where input reference sets are formed by stratified sampling of either class, the
--classweight argument may be used to artificially inflate the impact of one class or the other. Suppose that the
training set income.data.st is created by down-sampling the non-target class to a fifth of its original size. Then the
ensemble training is performed as follows:

# skytree-server [gbt|rdf] \

--training_in income.data.st \
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--training_labels_in income.data.labels \

--testing_in income.test.st \

--num_trees 100 \

--model_out model.with.classweights \

--probabilities_out probabilities.imbalance \

--labels_out labels.imbalance \

--classweight 5 \

--classweight 1

The --classweight parameter must be repeated for each class in --training_labels_in and its values are
assigned according to the numerical order of the class labels. In this case, the --classweight=5 is for class -1 while
class 1 still has --classweight=1. More details regarding the usage of class weights in Skytree Server is presented
in Class Weights (page 164).

Tuning the Model

The process of tuning for the right parameter settings usually involves the following steps:

1. Split the original training data into a new tuning and new training dataset.

2. Train the model with the new training dataset and a setting of parameters.

3. Assess accuracy of model on new tuning data.

4. Possibly repeat the above 3 steps many times and average the accuracy.

The above 4 steps are then repeated for multiple parameter settings, and the parameter settings with the best
accuracy (based on user defined measures like Gini, classification accuracy, F-score, etc.) are chosen to build the final
production model. This is called Cross-Validation (http://en.wikipedia.org/wiki/Cross-validation_(statistics)).

There are a few general ways to do cross-validation:

• Holdout set: Splitting the training data randomly into a training dataset and a tuning dataset. Typically, between
20-30% is reserved for tuning. The rest is used for training.

• Multiple restarts of holdout sets: The above process can be repeated many times, each time randomly generating
a new training and tuning split. The accuracy results over all runs are then averaged.

• K-Fold cross validation.

• User supplied tuning dataset and labels.

Skytree Server Ensemble modules are able to do all of the above methods for tuning parameters automatically.
Simple examples are given in the next sections.

Tuning the Number of Trees with a Holdout Set

To automatically holdout a random portion of the training data the --holdout_ratio argument can be used.

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--holdout_ratio 0.2 \

--num_trees 100
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The command above will hold out 20% of the training data for use in evaluating the model. Though no tuning
parameters were explicitly specified, the presence of a tuning set automatically puts Skytree Server into tuning mode.
Any tunable parameters will be tuned given the user provided values, ranges and/or step sizes.

In the above example the only argument that can be tuned is the number of trees. The default behavior is to score the
model using the tuning set after every 10% of iterations (in the example above, every 10 trees). Thus the model will
build 10 trees and then score on the holdout data and report. Then it will go on to build 20 trees and score on the
holdout data and so on reporting accuracy scores each step of the way.

E.g., to score every 5 iterations instead of every 10 in the example above, run:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--holdout_ratio 0.2 \

--num_trees 5:5:100 \

--loglevel verbose

This will search for the best value of --num_trees in the set 5, 10, 15, ..., 95, 100. Notice that by specifying
--loglevel=verbose scoring results are reported as the model is generated.

Note: Tuning the number of trees does not significantly affect runtime.

Upon completion, the model parameters giving the ten best Ginis, F-Scores, accuracies and capture deviations,
respectively, are reported. For each of the best models (one per metric) all parameters are reported as part of an
option string that can be used to reproduce the models. All tuning results can be saved to a file using the --tuning_
results_out option. Users can specify whether the format of this output file is JSON or CSV using the --tuning_
results_format option. By default, the tuning results output format is CSV.

When scoring, the F-Scores and classification accuracies reported are those obtained by optimizing the probability
threshold used in classification. This threshold is reported for the best models as the --probability_threshold in
the option string described above. By default, when considering the models with the best Gini and capture deviation
(which depend only probabilities, not classification), the probability threshold giving the highest F-Score is used. If the
accuracy of the model is of greater interest, then specify --classification_objective=accuracy. For further

information, please refer to The Probability Threshold (page 73).

Tuning the Number of Trees using K-Fold Cross Validation

Tuning can also be done using K-fold cross validation. This is better than using a single hold out set which is
randomly generated as above. The downside is that it can be approximately K times slower. One strategy is to hone in
on approximate parameters using a holdout set and then fine tune the parameters using K-fold cross validation. In
the above we replace --holdout_ratio with --num_folds. The parameters with the best average results over all
folds are returned:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--num_folds 5 \

--num_trees 5:5:100 \

--loglevel verbose

64 | Skytree Server User Guide Confidential Chapter 5 Prediction



If both --num_folds and --holdout_ratio are provided then the algorithm will not do K-fold cross validation but
instead will repeat --num_folds times with a new holdout tuning set and return the parameters with the best
average results over these --num_folds runs.

Tuning the Number of Trees using User-Supplied Tuning Data

You can generate a tuning dataset separately that should be used for tuning as well. This is done as follows:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--tuning_in income.tune.st \

--tuning_labels_in income.tune.labels \

--num_trees 100

In this case the model will be built and scored on the input tuning dataset provided.

You can also specify a --tuning_models_out option, which allows all models trained during the tuning phase to
be written to files using a user-specified prefix. When tuning over the number of trees, Skytree Server generates a
single model file storing all of the trees tuned over rather than generating separate lists. To limit the number of trees
when using this model, specify the --num_trees option when loading this model with the --model_in. An index file
is also written, giving the parameters used for each model. If a test dataset was specified via the --testing_in
option, the appropriate model will be read during the testing phase instead of being re-trained.

Tuning for Skewed Data

The --sampling_ratio option can also be tuned by specifying appropriate ranges for the option(s). The following
command will test four different parameter combinations for the sampling ratio (0.75, 0.25), (0.75, 0.5), (1.0, 0.25),
(1.0, 0.5):

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--holdout_ratio 0.2 \

--num_trees 100 \

--sampling_ratio 0.75,1.0 \

--sampling_ratio 0.25,0.5

If only a single ratio is specified, the cross-combinations of the parameters will not be used. Thus, this command
produces only two parameter combinations:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--holdout_ratio 0.2 \

--num_trees 100 \

--sampling_ratio 0.25,0.5

When automatically handling skewed data via the --imbalance option, the --imbalance_scale parameter can
also be specified and tuned:

# skytree-server [gbt|rdf] \

--training_in income.data.st \
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--training_labels_in income.data.labels \

--holdout_ratio 0.2 \

--num_trees 100 \

--imbalance \

--imbalance_scale 0.5:0.5:3.0

Tuning Parameter Specification via Input File

As mentioned in the previous section, the previous tuning example can also be specified from an input file:

# skytree-server [gbt|rdf] \

--input_file input

with the following content of the file input:

training_in = income.data.st

training_labels_in = income.data.labels

num_trees = 100

model_out = model.simple

holdout_ratio = 0.2

imbalance = on

imbalance_scale = 0.5:0.5:3.0

Moreover, multiple such tuning parameter scans be specified at once by specifying multiple [tunable] sections
containing at least one tunable parameter per section:

training_in = income.data.st

training_labels_in = income.data.labels

model_out = model.simple

holdout_ratio = 0.2

imbalance = on

[tunable]

num_trees = 100:10:200

imbalance_scale = 0.5:0.5:3.0

[tunable]

num_trees = 100:20:500

imbalance_scale = 0.5:0.05:1.0

Option Order of Precedence

One complete set of options is assembled for each [tunable] section. Command-line options have highest priority,
followed by options from the non-[tunable] (top) part of the input file (if any), then followed by the tuning options
from each corresponding [tunable] section. The input file may contain only [tunable] sections, or it may contain
only non-tunable options, or any combination thereof.

The order of precedence for options is:

1. Command-line

2. Input file

3. Input file [tunable] section(s)
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In the following example, the value of num_trees will be ignored for all [tunable] sections, because the first
specification of num_trees=100 will override any subsequent settings. As a (possibly unintended) consequence, the
input file below will run three tuning runs with the same num_trees=100 option, ignoring num_trees=500, num_
trees=1000 and num_trees=5000:

# skytree-server rdf \

--training_in income.data.st \

--training_labels_in income.data.labels \

--input_file input \

--num_dimensions 2,5

with input file input

num_trees = 100 <== overrides values below

holdout_ratio = 0.2

imbalance = on

smoothing = 0,0.001,0.01

[tunable]

num_trees = 500

imbalance_scale = 0.5,0.6

[tunable]

num_trees = 1000

imbalance_scale = 0.5:0.1:1.0

[tunable]

num_trees = 5000

imbalance_scale = 0.5:0.5:3.0

Tuning Classifiers with Score Weights

With Skytree Server, the predictions of the learned classifiers can be scored using weights to get the weighted
classification score (see Weighted Scoring (page 169) for details on weighted scoring). The Ensemble learning
methods allow the user to tune for model parameters with respect to the weighted classification score. This is
accomplished by scoring the predictions for the tuning set (in each tuning fold) with respect to the weights
associated with the individual tuning points. These score weights do not affect the model in any way. Score weights
only factor in when comparing the performances of different models that are evaluated using the score weights on
the tuning data.

If the user supplies the tuning data using the --tuning_in option, the weights associated with the individual points
in the tuning data can be specified with the --tuning_score_weights_in option. For example, tuning for the
number of trees (that is, the forest size) with the user supplied tuning data (specified with --tuning_in) and
corresponding weights (specified with --tuning_score_weights_in) can be accomplished as follows:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--tuning_in income.tune.st \

--tuning_labels_in income.tune.labels \

--tuning_score_weights_in income.tune.weights \

--num_trees 100
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This will choose the best forest size with respect to the weighted tuning score. The score weights can also be used if
we are using holdout sets from the training data for tuning. For example, tuning for the number of trees with a
holdout set from the training data (specified with --holdout_ratio) and its corresponding weights (specified with
--training_score_weights_in) can done as follows:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--training_score_weights_in income.data.weights \

--holdout_ratio 0.2 \

--num_trees 100

This command will holdout 20% of the training data for evaluating the model learned on the rest 80% of the training
data. The specification of the --training_score_weights_in implies that the weights associated with the points
in the holdout set (20% of the training data) will be used to score the predictions of the learned model on the holdout
set and the best parameter setting will chosen with respect to the weighted tuning score.

In a similar fashion, the weights can be specified in K-fold cross validation. In this case, the weighted scoring in each
fold will be done with respect to the weights of the individual points in the holdout set used for tuning in that fold. For
example, the 5-fold cross validation with weights is done as follows:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--training_score_weights_in income.data.weights \

--num_folds 5 \

--num_trees 100 \

--loglevel verbose

Training Classifiers with Point Weights

Many times it is viable to put weights on certain points when building a model. A simple example of this may be that
sometimes the training data may have multiple repeats of the same point. For example, if a point is repeated 20 times
and represented with 20 rows in the training data, this could be substituted with a point weight of 20 and 1 row in the
training data. More advanced versions of this concept involve continuous point weights where for example a point
may be up-weighted in the training data by 10% and thus have a point weight of 1.1. This may be done for many
reasons - time based weighting of points in sliding window techniques, cost weighting as part of the trained model
etc. In other words given a set of training data and a set of training point weights the model is built with each point
represented point weight times. This is different from score weights since score weights are never seen in the training
phase and are only used when a model has finished building and the score modules are called. Point weights are the
opposite, they are only seen when the model is being built and have nothing to do with scoring.

The only way to specify point weights is through the --training_point_weights_in option. There must be one
row in this file per row in the --training_in file. A simple example:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--training_point_weights_in income.data.weights \

--testing_in income.test.st \

--num_trees 100 \
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--labels_out labels.pointweights

An example involving tuning is presented next:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--training_point_weights_in income.data.weights \

--holdout_ratio 0.2 \

--testing_in income.test.st \

--num_trees 100 \

--labels_out labels.pointweights.holdout

This command will holdout 20% of the training data for tuning the model learned on the rest 80% of the training data.
The specification of the --training_point_weights_in implies that the weights associated with the points in the
training set (the randomly held out 80% of the training data) will be used to train the model. The point weights for
20% of the data held out for tuning will be ignored. Similar reasoning will follow when --num_folds is specified for
each fold produced for cross validation.

Tuning and Testing

Skytree Server provides the following methods for tuning and testing:

• Tuning for Gini (default) (page 69)

• Tuning for Best Classification Accuracy (page 69)

• Tuning for Yield (page 70)

Tuning for Gini (default)

A testing dataset can be specified via the --testing_in option when Skytree Server runs in tuning mode. Skytree
Server will first tune for the best parameters as above and use the model giving the best Gini (by default) for
prediction using the test set. If --model_out is specified then the best model will be stored to a file as well.

If a holdout dataset was generated, a new model will first be generated using the full training dataset.

The following command runs the entire process:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--holdout_ratio 0.2 \

--testing_in income.test.st \

--num_trees 5:5:100 \

--num_dimensions 1:1:4 \

--probabilities_out probabilities.tuning \

--labels_out labels.tuning

Tuning for Best Classification Accuracy

If it is desired to pick the model with the best accuracy rather than the best Gini the --testing_objective
argument can be used. This is illustrated in the following example:

Chapter 5 Prediction Confidential Skytree Server User Guide | 69



# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--holdout_ratio 0.2 \

--testing_in income.test.st \

--num_trees 5:5:100 \

--num_dimensions 1:1:4 \

--probabilities_out probabilities.tuning \

--labels_out labels.tuning \

--testing_objective accuracy

Note: If a holdout dataset was generated, a new model will first be generated using the full training dataset.

Tuning for Yield

A --yield_values_in option can be used to specify a file for calculating yield values during tuning. This file must
be the same length as either the training or tuning vector, depending on whether a tuning table or holdouts are used.

# skytree-server [gbt|rdf] \

--training_in yield.data.st \

--training_labels_in yield.data.labels \

--num_folds 2 \

--model_out model \

--num_trees 10:10:100 \

--max_splits 2:2:12 \

--tree_depth 3,8 \

--learning_rate .1,.25 \

--yield_values_in yield.data.values \

--log run.log

You can also specify --testing_objective=yield. In this case, the yield value will be used to determine the best
model. A --yield_values_in file is required if --testing_objective=yield is specified; otherwise it is optional.

The logs show the best tuning results for Gini and Yield as well as the parameters used to reproduce these models.

======================================================================

Best tuning results for Gini

======================================================================

Metrics:

-----------------------------------------------------------------------------------------

| # | Gini | Capt. dev. | Prec@k | F-Score | Accuracy | Yield |

-----------------------------------------------------------------------------------------

| 1 | 0.995849 | 0.023764 | 0.974207 | 0.981042 | 0.994205 | 0.989117 |

| 2 | 0.995816 | 0.023237 | 0.975103 | 0.981042 | 0.994205 | 0.986329 |

| 3 | 0.995747 | 0.020803 | 0.975836 | 0.981042 | 0.994205 | 0.990965 |

| 4 | 0.995722 | 0.024440 | 0.975836 | 0.980707 | 0.994103 | 0.974812 |

| 5 | 0.995680 | 0.021182 | 0.973433 | 0.980069 | 0.993897 | 0.990597 |

| 6 | 0.995657 | 0.014581 | 0.976541 | 0.979697 | 0.993798 | 0.964130 |

| 7 | 0.995505 | 0.029381 | 0.971339 | 0.981361 | 0.994303 | 0.980777 |

| 8 | 0.995500 | 0.028040 | 0.974681 | 0.981025 | 0.994202 | 0.990709 |

| 9 | 0.995497 | 0.035927 | 0.971315 | 0.981361 | 0.994303 | 0.980381 |

| 10 | 0.995490 | 0.023865 | 0.975201 | 0.978421 | 0.993392 | 0.973755 |

======================================================================

Best tuning results for Yield

======================================================================
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Metrics:

-----------------------------------------------------------------------------------------

| # | Gini | Capt. dev. | Prec@k | F-Score | Accuracy | Yield |

-----------------------------------------------------------------------------------------

| 1 | 0.994347 | 0.073209 | 0.964396 | 0.977451 | 0.993106 | 0.994363 |

| 2 | 0.995375 | 0.023597 | 0.974446 | 0.979748 | 0.993805 | 0.994200 |

| 3 | 0.993837 | 0.077078 | 0.962682 | 0.977451 | 0.993106 | 0.994029 |

| 4 | 0.995328 | 0.025753 | 0.972265 | 0.979748 | 0.993805 | 0.993818 |

| 5 | 0.990495 | 0.465575 | 0.961564 | 0.943534 | 0.983529 | 0.993460 |

| 6 | 0.990495 | 0.465575 | 0.961564 | 0.943534 | 0.983529 | 0.993460 |

| 7 | 0.990495 | 0.465575 | 0.961564 | 0.943534 | 0.983529 | 0.993460 |

| 8 | 0.990485 | 0.438614 | 0.961505 | 0.943534 | 0.983529 | 0.993460 |

| 9 | 0.990485 | 0.438614 | 0.961505 | 0.943534 | 0.983529 | 0.993460 |

| 10 | 0.990485 | 0.438614 | 0.961505 | 0.943534 | 0.983529 | 0.993460 |

Parameters to reproduce the model with the best Gini:

--num_trees=80 --tree_depth=8 --max_splits=10 --min_node_weight=0.000000 --learning_rate=0.250000

--regularization --regularization_bins=200 --trim=off --categorical_sampling_seed=23085656

--probability_threshold=0.0705677047256971 --compression=on

Parameters to reproduce the model with the best Yield:

--num_trees=100 --tree_depth=3 --max_splits=4 --min_node_weight=0.000000 --learning_rate=0.250000

--regularization --regularization_bins=200 --trim=off --categorical_sampling_seed=23085656

--probability_threshold=0.2845532632717532 --compression=on

Using the --yield_values_in option, the results can be scored as follows:

# skytree-server score \

--yield_values_in yield.data.values \

--predicted_labels_in labels.tuning

Multi-Class Classification

Until now, we have only referred to binary classification problems. Skytree Server also supports multi-class
classification problems in the Random Decision Forest and Gradient Boosted Trees modules. The interface for multi-
class classification is essentially the same as that for binary classification except that certain features are disabled
when the labels presented have more than 2 classes.

Here is a simple way to run multi-class classification:

# skytree-server [gbt|rdf] \

--training_in letter-recognition.data.train.st \

--training_labels_in letter-recognition.data.train.labels \

--num_trees 100 \

--testing_in letter-recognition.data.test.st \

--labels_out labels \

--probabilities_out probabilities \

--output_with_ids

The results in the labels file above can be scored as follows:

# skytree-server score \

--true_labels_in letter-recognition.data.test.labels \
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--predicted_labels_in labels

Scoring outputs a per-class confusion matrix, an aggregated confusion matrix, and the classification accuracy of the
model.

Confusion Matrix:

+-----------------------------------------------------------------+

| Labels | Pred 0 | Pred 1 | ... | Pred 9 |

|=================================================================|

| True 0 | 13 | 11 | ... | 9 |

|-----------------+-----------+-----------+-----------+-----------+

| True 1 | 9 | 10 | ... | 13 |

|-----------------+-----------+-----------+-----------+-----------+

| True 2 | 6 | 9 | ... | 11 |

|-----------------+-----------+-----------+-----------+-----------+

| ... | ... | ... | ... | ... |

|-----------------+-----------+-----------+-----------+-----------+

| True 9 | 12 | 13 | ... | 9 |

+-----------------------------------------------------------------+

Aggregate:

+---------------------------------------------------------------+

| Class | Total | Right | Wrong |

|===============================================================|

| 0 | 110 | 13 | 97 |

|---------------------+-------------+-------------+-------------|

| 1 | 119 | 10 | 109 |

|---------------------+-------------+-------------+-------------|

| 2 | 105 | 7 | 98 |

|---------------------+-------------+-------------+-------------|

| ... | ... | ... | ... |

|---------------------+-------------+-------------+-------------|

| 9 | 91 | 9 | 82 |

|---------------------+-------------+-------------+-------------|

| Overall | 1000 | 99 | 901 |

+---------------------------------------------------------------+

Classification Accuracy: 0.099

The above skytree-server score configuration doesn’t have any specific toggle for changing to multi-class
mode. Skytree Server will automatically detect if the problem is multi-class based only on the --training_in
dataset. The --testing_in and --tuning_in datasets are not used to shift to multi-class mode, so if the training
dataset does not contain more than two labels, then the problem is assumed to be binary. In any case, if the training
data does not have more than two labels, there is no way for the model to predict outside of these two labels.

The following is a more advanced example and illustrates that the tuning interface and results interface for the rdf
module do not change for multi-class problems.

# skytree-server rdf \

--training_in letter-recognition.data.train.st \

--training_labels_in letter-recognition.data.train.labels \

--holdout_ratio 0.3 \

--num_trees 10:10:100 \

--num_dimensions 2,6,8 \

--testing_in letter-recognition.data.train.st \

--labels_out labels \

--probabilities_out probabilities
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A similarly advanced example for GBT would be as follows:

# skytree-server gbt \

--training_in letter-recognition.data.train.st \

--training_labels_in letter-recognition.data.train.labels \

--holdout_ratio 0.3 \

--num_trees 10:10:100 \

--learning_rate 0.06:0.02:0.14 \

--testing_in letter-recognition.data.train.st \

--labels_out labels \

--probabilities_out probabilities \

--fast_read

Limitations

Presently there are some restrictions on the options allowed in Skytree Server multi-class RDF and GBT. These are
enumerated below.

• --sampling_ratio, --imbalance_scale, --sample_with_replacement, and --imbalance are not
supported. For RDF, the training data is sampled with replacement up to the size of the training dataset. For GBT,
no sampling is performed.

• --classification_objective and --probability_threshold are specific to binary classification
problems as well.

• --smoothing is not supported in RDF because it is only applicable to binary problems.

• --ensemble_size, --trim, and --test_point_variable_importances_out are not supported with
GBT multi-class.

• --classweight is not supported.

• --testing_objective is set to accuracy. This is the only allowed setting because other metrics such as GINI
are not well defined for multi-class.

The Probability Threshold

In ensemble methods the predicted class label is derived from the probabilities generated for being of a particular
class type. For example the probabilities that are output by the Ensemble modules are the probability of being class
+1.

Typically, if for any given point, the probability of being +1 is > 0.5, then we assign that point the label of +1. This is
the default behavior of Skytree Server as well when it is not doing automatic tuning. However, a probability threshold
of 0.5 or 50% is not necessarily the best value for highest classification accuracy, or for that matter any scoring
metric that utilizes the labels output. Therefore, when Skytree Server is in tuning mode it automatically reports the
best probability threshold for any given metric.

Two cases arise depending on the --testing_objective.

1. --testing_objective is accuracy or fscore i.e. label based metric is being used to pick the best model. In
this case the probability threshold is automatically tuned and applied in tuning as well as testing and stored with
the model. It is also reported in the log. Therefore if --testing_objective is accuracy, then all the scores and
models will use the best possible probability threshold for accuracy. Similarly for fscore.
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2. --testing_objective is gini or capture_dev or precision_at_k, i.e. probability based metric is being
used to pick the best model.

a. In this case, if the --testing_objective is gini or capture_dev, then the --classification_
objective argument comes into play. If --classification_objective is accuracy, then the model will
still be picked based on best gini or capture_dev but the probability threshold will be tuned for accuracy
and the labels outputted for the test data will be based on this probability threshold. Similarly, for fscore.

b. In this case, if the --testing_objective is precision_at_k (where k∈ (0,1) is specified via --k_for_

precision and defaults to 0.1), the --classification_objective is not used at all. The probability
threshold is chosen to correspond to the top 100k_th percentile probability. This implies that any test point
with the probability of being +1 higher than this threshold is probably in the top 100k-th percentile.

Regression with gbtr and rdfr

The examples that follow will use [gbtr|rdfr] to signify that they can use either the rdfr or gbtr module, with
concepts remaining the same. Any example using features specific to one module will use only that module’s name.
Those examples will be in module specific sections.

The first example illustrates how to build a simple model and save it to a file. In the following command we provide
the training and testing data, training and testing targets, and the number of trees to build in the ensemble method.
We then train the model and save it.

# skytree-server [gbtr|rdfr] \

--training_in income.data.st \

--training_targets_in income.data.targets \

--testing_in income.test.st \

--num_trees 100 \

--model_out model.simple \

--targets_out targets.[gbtr|rdfr]

Given actual regression targets income.data.targets for the training points in income.train.st, this will
produce a file, targets.rdfr or targets.gbtr, containing predicted labels for the test points in income.test.st.

Run the following command to produce the regression error metrics from the two target files:

# skytree-server score \

--true_targets_in income.test.targets \

--predicted_targets_in targets.[gbtr|rdfr]

The output will contain the following metrics:

• Mean absolute error

• Mean squared error

• Root mean squared error

• L1 error

• L2 error

• Relative L1 error

• Relative L2 error
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• Coefficient of determination

• Normalized Gini

Tuning the Model

The process of tuning for the right parameter settings usually involves the following steps:

1. Split the original training data into a new tuning and new training dataset.

2. Train the model with the new training dataset and a setting of parameters.

3. Assess accuracy of model on new tuning data.

4. Possibly repeat the above 3 steps many times and average the accuracy.

The above 4 steps are then repeated for multiple parameter settings and the parameter settings with the best
accuracy (based on user defined measures like mean absolute error, mean squared error, etc.) are chosen to build the
final production model. This is called Cross-Validation (http://en.wikipedia.org/wiki/Cross-validation_(statistics)).

As with classification, there are a few general ways to do cross-validation:

• Holdout set: Splitting the training data randomly into a training dataset and a tuning dataset. Typically, between
20-30% is reserved for tuning. The rest is used for training.

• Multiple restarts of holdout sets: The above process can be repeated many times, each time randomly generating
a new training and tuning split. The accuracy results over all runs are then averaged.

• K-Fold cross validation.

• User supplied tuning dataset and labels.

The Ensemble modules are able to do all of the above methods for tuning parameters automatically. Simple examples
are given in the next sections.

Tuning the Number of Trees with a Holdout Set

To automatically holdout a random portion of the training data the --holdout_ratio argument can be used.

# skytree-server [gbtr|rdfr] \

--training_in income.data.st \

--training_targets_in income.data.targets \

--holdout_ratio 0.2 \

--num_trees 100

The command above will hold out 20% of the training data for use in evaluating the model. Though no tuning
parameters were explicitly specified, the presence of a tuning set automatically puts Skytree Server into tuning mode.
Any tunable parameters will be tuned given the user provided values, ranges and/or step sizes.

In the above example, the only argument that can be tuned is the number of trees. The default behavior is to score the
model using the tuning set after every 10% of iterations (in the example above, every 10 trees). Thus the model will
build 10 trees and then score on the holdout data and report. Then it will go on to build 20 trees and score on the
holdout data and so on, reporting scores each step of the way.

E.g., to score every 5 iterations instead of every 10 in the example above, run:
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# skytree-server [gbtr|rdfr] \

--training_in income.data.st \

--training_targets_in income.data.targets \

--holdout_ratio 0.2 \

--num_trees 5:5:100 \

--loglevel verbose

This will search for the best value of --num_trees in the set 5, 10, 15, ..., 95, 100. Notice that by specifying
--loglevel=verbose scoring results are reported as the model is generated.

Note: Tuning the number of trees does not significantly affect runtime.

Upon completion, the model parameters giving the ten best mean absolute errors, mean squared errors, normalized
Gini, and coefficient of determination are reported. For each of the best models (one per metric) all parameters are
reported as part of an option string that can be used to reproduce the models. All tuning results can be saved to a file
using the --tuning_results_out option. Users can specify whether the format of this output file is JSON or CSV
using the --tuning_results_format option. By default, the tuning results output format is CSV.

Tuning the Number of Trees using K-Fold Cross Validation

Tuning can also be done using K-fold cross validation. This is better than using a single hold out set which is
randomly generated as above. The downside is that it can be approximately K times slower. One strategy is to hone
in on approximate parameters using a holdout set and then fine tune the parameters using K-fold cross validation. In
the above we replace --holdout_ratio with --num_folds. The parameters with the best average results over all
folds are returned:

# skytree-server [gbtr|rdfr] \

--training_in income.data.st \

--training_targets_in income.data.targets \

--num_folds 5 \

--num_trees 5:5:100 \

--loglevel verbose

If both --num_folds and --holdout_ratio are provided then the algorithm will not do K-fold cross validation but
instead repeat --num_folds times with a new holdout tuning set and return the parameters with the best average
results over these --num_folds runs.

Tuning the Number of Trees using User-Supplied Tuning Data

The user can generate a tuning dataset separately that should be used for tuning as well. This is done as follows:

# skytree-server [gbtr|rdfr] \

--training_in income.train.st \

--training_targets_in income.train.targets \

--tuning_in income.tune.st \

--tuning_targets_in income.tune.targets \

--num_trees 100

In this case the model will be built and scored on the input tuning dataset provided.

The --tuning_models_out option allows all models trained during the tuning phase to be written to files using a
user-specified prefix. An index file is also written giving the parameters used for each model. If a test dataset was also
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specified via the --testing_in option, the appropriate model will be read during the testing phase instead of being
re-trained.

Selecting the Testing/Output Model

If Skytree Server runs in tuning mode along with either the --testing_in and/or --model_out option, the tuned
model with the best mean absolute error will be used for testing and/or file output. You can control this behavior by
specifying the --testing_objective, which can take values of mean_absolute_error (default), mean_squared_
error, normalized_gini, or coeff_determination. (Refer to Normalized Gini (page 166) and Coefficient of
Determination (page 165) for additional information.)

Tuning Parameter Specification via Input File

As mentioned above, the previous tuning example can also be specified from an input file:

# skytree-server [gbtr|rdfr] \

--input_file input

with the following content of the file input:

training_in = income.data.st

training_targets_in = income.data.targets

num_trees = 100

holdout_ratio = 0.2

Moreover, multiple such tuning parameter scans be specified at once by specifying multiple [tunable] sections
containing at least one tunable parameter per section:

training_in = income.data.st

training_targets_in = income.data.targets

holdout_ratio = 0.2

[tunable]

num_trees = 20:20:500

num_dimensions = 4,5,9

[tunable]

num_trees = 200:50:1000

tree_depth = 0,10,20

[tunable]

num_trees = 10:5:200

tree_depth = 0:2:10

Order of Precedence

One complete set of options is assembled for each [tunable] section. Command-line options have highest priority,
followed by options from the non-[tunable] (top) part of the input file (if any), then followed by the tuning options
from each corresponding [tunable] section. The input file can contain only [tunable] sections, or it may contain
only non-tunable options, or any combination thereof.

The order of precedence for options is as follows:

1. Command-line

2. Input file
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3. Input file [tunable]section

In the following example, the value of num_trees will be ignored for all [tunable] sections, because the first
specification of num_trees=100 will override any subsequent settings. As a (possibly unintended) consequence, the
input file below will run three tuning runs with the same num_trees=100 option, ignoring num_trees=500, num_
trees=1000, and num_trees=5000:

# skytree-server rdfr \

--training_in income.data.st \

--training_targets_in income.data.targets \

--input_file input \

--num_dimensions 2,5

with input file input

num_trees = 100 <== overrides values below

holdout_ratio = 0.2

[tunable]

num_trees = 500

tree_depth = 2,3

[tunable]

num_trees = 1000

tree_depth = 2:1:5

[tunable]

num_trees = 5000

tree_depth = 2:2:10

Tuning Regressors with Score Weights

Similar to classifier tuning with score weights (Tuning Classifiers with Score Weights (page 67)), the Ensemble Learning
methods allow the user to tune for model parameters with respect to the weighted regression score (see Weighted
Scoring (page 169) for details on weighted regression scoring). This is accomplished by scoring the predictions for
the tuning set (in each tuning fold) with respect to the weights associated with the individual tuning points.

If the user supplies the tuning data using the --tuning_in option, the weights associated with the individual points
in the tuning data can be specified with the --tuning_score_weights_in option. For example, tuning for the
number of trees (that is, the forest size) with the user supplied tuning data (specified with --tuning_in) and
corresponding weights (specified with --tuning_score_weights_in) can be accomplished as follows:

# skytree-server [gbtr|rdfr] \

--training_in income.train.st \

--training_targets_in income.train.targets \

--tuning_in income.tune.st \

--tuning_targets_in income.tune.targets \

--tuning_score_weights_in income.tune.weights \

--num_trees 100

This will choose the best forest size with respect to the weighted tuning regression score. The score weights can also
be used if we are using holdout sets from the training data for tuning. For example, tuning for the number of trees
with a holdout set from the training data (specified with --holdout_ratio) and its corresponding weights
(specified with --training_score_weights_in) can done as follows:
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# skytree-server [gbtr|rdfr] \

--training_in income.data.st \

--training_targets_in income.data.targets \

--training_score_weights_in income.data.weights \

--holdout_ratio 0.2 \

--num_trees 100 \

--loglevel verbose

This command will holdout 20% of the training data for evaluating the model learned on the rest 80% of the training
data. The specification of the --training_score_weights_in implies that the weights associated with the points
in the holdout set (20% of the training data) will be used to score the predictions of the learned model on the holdout
set and the best parameter setting will chosen with respect to the weighted tuning score.

In a similar fashion, the weights can be specified in K-fold cross validation. In this case, the weighted scoring in each
fold will be done with respect to the weights of the individual points in the holdout set used for tuning in that fold. For
example, the 5-fold cross validation with weights is done as follows:

# skytree-server [gbtr|rdfr] \

--training_in income.data.st \

--training_targets_in income.data.targets \

--training_score_weights_in income.data.weights \

--num_folds 5 \

--num_trees 100 \

--loglevel verbose

Missing Values

The sections that follow describe how Skytree Server handles missing values in testing and training data.

Training

A common technique of dealing with missing data is imputation i.e. when some value is used to replace the missing
value before training begins. While this technique has its merits, it may be preferable to handle missing values that
occur in the training data within the model itself. Tree-based methods have several techniques that elegantly handle
missing values. In Skytree Server, the tree-based methods, gbt, rdf, rdfr, and gbtr handle missing values by
creating ternary splits when evaluating dimensions that may have missing values for possible split points. In other
words, when missing values are present in the data for a particular tree node and attribute, the split point is chosen
based on a 3-way split into the missing node, left child, and right child. This has the advantage of naturally modeling
missing value behavior in different parts of the space as dictated by the method being used.

Testing

Missing values can occur even in testing data. The problem is exacerbated here because you may have patterns of
missing data in the test data that were not present in the training dataset. Complex patterns can emerge in different
parts of the data space. In the training data, for example, it is possible that an attribute age (for example) had no
missing income values for all age values < 18. But the test data may have many points in which age < 18, and the
income attribute has missing values.

While predicting for a test point, if we encounter a node for which the attribute used to split on has a missing value in
the test point, we check to see if there is a missing value branch in the node. If so, we follow that branch. If there is no
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such branch, which can happen as explained above, then we use the score within that node and stop recursion for
that tree and return.

Usage

The following should be noted when using missing values within Skytree Server.

• No special flags need to be provided for data that contains missing values. If the data contains missing values as
appropriately signaled, the modules will handle them appropriately.

• The --fast_read option will work with data that contains missing values.

• The following symbols can be used to represent data with missing values

▪ ‘?‘ : This is the way Skytree Server Data Preparation encodes missing values. This is the recommended
method.

▪ ‘[+|-]inf‘ : This is NOT case sensitive, so ‘-INF‘, ‘+iNf‘ will be decoded to missing values.

▪ ‘inf‘ : This is NOT case sensitive, so ‘INF‘, ‘iNf‘ will be decoded to missing values.

▪ ‘nan‘ : This is NOT case sensitive, so ‘nan‘, ‘nAn‘ will be decoded to missing values.

▪ ‘[+|-]nan‘ : This is NOT case sensitive, so ‘-NAN‘, ‘+nAn‘ will all be decoded to missing values.

A Simple Example

The following example illustrates how to run datasets with missing values.

# skytree-server gbt \

--training_in income.missing.data.st \

--training_labels_in income.missing.data.labels \

--testing_in income.missing.test.st \

--num_trees 10 \

--labels_out labels

Notice that there are no missing-values-specific arguments; i.e. no additional arguments are needed, and missing
values are automatically detected in the input files.

Note: We recommend that you review the income.missing.data.st and income.missing.test.st files.

Variable Importances

Skytree Server provides methods for helping determine the importance of intrinsic variables and for continuous
dimensions. Refer to the following sections:

• Intrinsic Variable Importances (page 81)

• Intrinsic Split Importances (page 82)

• Test Point Variable Importances (page 83)
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Intrinsic Variable Importances

In tree-based methods the importance of each predictor variable in the model is not the same (i.e., certain predictor
variables will play a more important role than others in the tree model in determining how accurate the model is). One
way to determine relative importance amongst predictor variables is to use information used to split nodes
[breiman1984cart]. In essence, each node partitions the data using a particular predictor variable and that results in
some improvement in accuracy. For this predictor variable, summing up the weighted accuracy improvement across
all non-leaf nodes in the tree and comparing this summed value with that for other dimensions is a way to compare
importance of different predictor variables. This idea can be extended to ensembles of trees where the improvements
are summed up over all trees as well [hastie2009elem], [friedman2001gbt]. The importance values are scaled so that
the most important variable gets an importance of 100. This is achieved by dividing the raw importance values for all
the dimensions by the maximum value and then multiplying by 100. Only dimensions which are completely unused in
the model will have an importance of 0.

All of Skytree Server tree-based ensemble methods have the --variable_importances_out option that can be
used to output the relative importance of predictor variables in the ensemble model. This output file includes a single
column. The first row is the importances of the first column variable in the .st file, the second row is the importance of
the second column, and so on. The following is a simple example:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--holdout_ratio 0.2 \

--testing_in income.test.st \

--num_trees 5:5:100 \

--num_dimensions 1:1:4 \

--probabilities_out probabilities.tuning \

--labels_out labels.tuning \

--variable_importances_out variable_importances.out

In the above example, first tuning of parameters occurs where a holdout training sample is used to pick the best set
of parameters and then the best parameters found are applied to the whole training data and then the model is
applied to the test data to obtain results. The variable importances output are for the last model built (i.e., the one
that is applied to the test data).

Variable importance may be similarly computed and output for regression models.

Variable Importances Output as JSON

When outputting output the relative importance of predictor variables in the ensemble model, a --variable_

importances_out_as_json option can be specified. This enables writing variable importances as a JSON file with
feature names, attribute names, and column IDs along with the importance. All available information about the
column is printed in the following format:

{

"featureName": <string>,

"attributeName": <string>,

"originalColumnId": <integer>,

"trainingColumnId": <integer>,

"variableImportance": <float>

}
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The "featureName" and "originalColumnId" values are taken from the dataset information (from the comment
section of the training .st file). The "attributeName" value comes from the header line that might be present in the
training .st file. Finally, the "trainingColumnId" value is the column ID in the training .st file.

Intrinsic Split Importances

Variable importances provide insight into relative utility of different dimensions versus each other in a given model.
Taking that to another level is a feature called split importances for continuous dimensions. In this analysis we
bucket each continuous dimension into B bins and then measure the per point improvement that splits within these
buckets result in. In other words the concept is very similar to variable importances except for the following key
differences:

• We attribute importances to buckets within each dimension. Buckets are simply equidistant ranges between the
min and max values within a dimension. The number of buckets is configurable.

• We divide the final improvement, which is the sum of improvements from splits that occurred within that bucket,
by the number of points that were in the split nodes. The reason for this is that some buckets just happen to have
more points in them. For example, let’s say the dataset has a dimension called age and the minimum age is 0 and
the maximum age is 90 yet 80% of the dataset has age between 30 and 45. That means that the absolute value
of split importances in the corresponding buckets will be very high but this does not provide any insight into
whether that range provides splits that are better than any other bucket. On the other hand a bucket which has
very high split importance but has only 2 points in it does not provide any useful information either. What is
interesting are buckets with large support that differ in the split importance. What that might indicate is that
when splits occurred in one of those buckets the average improvement per point was higher than in another
bucket (for example).

• Split importances are only available for continuous dimensions.

All of Skytree Server tree based ensemble methods have the --split_importances_out option that can be used to
output the relative split importance of predictor variable split bins in the ensemble model. The following is a simple
example:

# skytree-server [gbt|rdf] \

--training_in income.data.st \

--training_labels_in income.data.labels \

--holdout_ratio 0.2 \

--testing_in income.test.st \

--num_trees 5:5:100 \

--num_dimensions 1:1:4 \

--probabilities_out probabilities.tuning \

--labels_out labels.tuning \

--variable_importances_out variable_importances.out \

--split_importances_out split_importances.out

In the above example, first tuning of parameters occurs where a holdout training sample is used to pick the best set
of parameters and then the best parameters found are applied to the whole training data and then the model is
applied to the test data to obtain results. The variable importances and split importances output are for the last
model built (i.e., the one that is applied to the test data).
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Test Point Variable Importances

Whereas intrinsic variable importances indicate relative importance of attribute variables for the whole model and
essentially model the training data, it may be desirable to compute the variables that contributed most toward the
prediction that a model makes for a particular point. This can be achieved through the --test_point_variable_
importances_out option.

A simple example is as follows:

# skytree-server gbt \

--training_in income.data.st \

--training_labels_in income.data.labels \

--testing_in income.test.st \

--num_trees 100 \

--test_point_variable_importances_out income.test.vimps \

--model_out model.simple

This produces a file called income.test.vimps, which contains the test point variable importances for the test
dataset, income.test.st. The resulting table in income.test.vimps is the same size as the table in the test
dataset. This is because the results include a vector for each point in the dataset, and the length of each vector is the
number of attributes in the dataset. Also, it is important to note that this can be computationally more expensive for
the prediction phase and, hence, may take longer run. (Training time is not affected by this output, but testing time is.)

Finally, models built and stored using --model_out can be used to get this output for different testing inputs as
follows:

# skytree-server gbt \

--model_in model.simple \

--test_point_variable_importances_out income.data.vimps \

--testing_in income.data.st

Random Decision Forests

The Random Decision Forests algorithm is an ensemble classifier composed of a collection of decision trees. The
ensemble returns classification based on the aggregate results of the individual trees. Each tree in the forest is a
weak classifier, trained by selecting a subset of the training data, usually with replacement, and a random selection of
the available features.

Each tree is grown using a sampling of the original training data. Nodes of the tree are split by considering a subset
of all features of the data and are grown without pruning.

Each ensemble classification requires classification by each tree in the forest. The class with a plurality of votes
determines the final classification.

Several factors affect the error of the model. Strong individual trees in the ensemble decrease the error rate and occur
with a larger number of trees. However, a large number of trees also introduces correlated trees, which increases the
error rate. For these reasons, among others, it’s important that the parameters of the Random Decision Forest be
tuned to provide the best possible error rate.

The rdf module can be applied to binary classification problems.

To see all available options for the rdf module, run:
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# skytree-server rdf --help

or refer to the Random Decision Forests Options (page 302) in the Command Reference appendix.

The remainder of this section discusses features specific to Random Decision Forests and explores how to maximize
classification performance for your machine learning problem using these unique features.

Handling Categorical Data

The Ensemble methods can handle categorical data seamlessly. There are a few options available in RDF for the user
to fine tune the way categorical variables are handled. This allows more control in the way data is split in the
decision tree based on a categorical attribute.

We illustrate briefly categorical decision splits with the help of an example. Assume one of the attributes in the
dataset is ‘color’ and it can take 4 values blue, green, red, black. Also, assume only binary splits for the moment. To
split the data into 2 parts we would have to create a combination of the above attribute values for example blue, green
or blue, red, black or simply blue, for which all data with those values would be partitioned left, and the rest of the data
partitioned right. In all there are 24-1=8 such combinations for this example and in general 2q-1 such combinations
where q is the number of possible unique categorical attribute values. A naive algorithm searches over all these
different combinations and picks the one with the least impurity. Skytree Server has an optimized algorithm for
finding the best partition in O(q) complexity vs. O(2q-1) complexity for binary classification problems using the
Random Decision Forest module.

Sometimes, it is preferable to try a few random combinations of attributes to split on. Skytree Server provides options
for various ways to employ good categorical splitting mechanisms. The following explains these in more detail:

• --categorical_selection_method: The way in which categorical attribute value partitions are derived. The
available options are:

▪ random: Create randomly distributed, equally sized splits on the attribute values.

▪ exact: Search for the best partition possible. As explained above, this can be very expensive for categorical
attributes with large number of unique attribute values (except for the case of Random Decision Forest binary
classification). If specified, for data with 10 or less unique attribute values the exhaustive search is performed.
For larger number of values a heuristic search is performed.

▪ random_exact: For unique attribute values less than or equal to --categorical_random_split_

threshold, this performs exact search and for higher number of values random splitting is attempted.

▪ one_vs_all: Splits are created with single attribute value on one side and all other values on the other side.
For example: blue or not blue.

▪ one_vs_all_random: Tries both random and one_vs_all.

▪ one_vs_all_exact: For unique attribute values less than or equal to --categorical_random_split_

threshold, this performs an exact search. For a higher number of values, one_vs_all splitting is
attempted.

Broadly speaking, in Random Decision Forests for binary classification both random_exact and exact can be
deployed effectively.

• --categorical_random_split_tries: This is the number of times random splitting of the attribute space is
attempted.

• --categorical_random_split_threshold: Used as explained above.
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Tuning the Number of Dimensions

In addition to tuning the number of trees for example, the number of randomly selected dimensions considered in
splitting each tree node may also be tuned. By default, the rdf module uses log

2
(D + 1) dimensions, where D is the

total number of attributes in the dataset. To change this behavior, specify the number of dimensions via the --num_
dimensions option. To consider the parameter in tuning, specify a range (or a comma-separated list):

# skytree-server rdf \

--training_in income.data.st \

--training_labels_in income.data.labels \

--holdout_ratio 0.2 \

--num_trees 100 \

--num_dimensions 1:1:4

Similarly, you can tune the --tree_depth and --smoothing options.

Dimension Sampling

When using --num_dimensions with the RDFR, RDF, or Ensemble GBT modules, the way in which dimensions are
sampled can be controlled in two ways.

1. Uniform sampling: For all dimensions, select with a uniform random distribution whether the dimension are
continuous or categorical. In other words, given an example dataset with say 20 "real" and continuous
dimensions and 10 categorical dimensions, the chance of any dimension being selected if --num_dimensions is
set to 10 is 1/3. This feature is disabled by default and can be enabled by using --cardinality_based_

dimension_sampling=false.

2. Cardinality based dimension sampling: This feature biases the sampling by making it more likely for categorical
dimensions with higher cardinality (i.e. that is those with a larger number of unique values in the node we are in)
to be picked during dimension selection for that node. Assume the same as the Uniform Sampling example, where
we have 30 dimensions in our dataset, of which 10 are continuous and 20 are categorical. Assume also that 10
of the categorical dimensions had 2 values each in the given node, and the other 10 had 4. In this case, the
categorical dimensions with 4 unique values would be twice as likely to be picked in dimension selection than the
rest of the categorical dimensions and would be 4 times as likely as any of the continuous dimensions. This
feature is enabled by default.

Sparse Data

The rdf module is capable of accelerated and more memory efficient execution for sparse datasets. As with multi-
class classification (described earlier), no special options need to be set to enable sparse operation. Rather, if the
input datasets (--training_in, --tuning_in, and --testing_in) are represented in the sparse file format given
in Skytree Server File Format (page 9), then rdf will employ a more compact internal representation of the sparse
data. Note, however, that if any of --training_in, --tuning_in, or --testing_in is represented as sparse, then
all of them must be represented as sparse. Additionally, saved models trained from data stored in the sparse format
may only be used to predict on testing sets also stored in the sparse format, and likewise for dense.

Using Less Memory

You can use the --num_cached_trees option to limit the amount of memory used by the rdf module. Lowering this
option's value results in lower memory usage at the expense of increased runtime.
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Gradient Boosted Trees

Gradient Boosted Trees (GBT) is a machine learning algorithm combining decision trees with boosting. The latter is a
numerical gradient optimization method that minimizes a loss function, in this case, the deviance.

The optimization is achieved by successively adding trees that best reduce the loss function. The first tree reduces
the loss function to the greatest extent possible, while subsequent trees focus on a residual that represents the
poorest responses of the model.

As the boosting iteration proceeds, the algorithm adjusts the relative weighting of each tree without modifying the
previous trees themselves. The resulting model is a linear combination of all trees.

The gbt module can be applied to binary classification problems. The data labels must be -1 and 1. To see all
available options for the gbt module, run:

# skytree-server gbt --help

or refer to Gradient Boosted Trees Options (page 247) in the Command Reference appendix.

The remainder of this section discusses some of the features unique to Gradient Boosted Trees and explores how to
maximize classification performance for your machine learning problem using these unique features.

Smart Search

In the case where users might not know the best configuration options to specify in order to train and tune a model,
or in the case where users want to repeat an experiment, GBT allows for hyper-parameter optimization (smart search).

With a series of --smart_search options, users only specify the training set and model validation options (tuning
dataset, holdout ratio, number of folds, etc.), and GBT will automatically search for the best parameter settings
without any additional required input from the user. When scoring, smart search will tune over the --testing_
objective while reporting additional scores.

The example below specifies to try 1000 different parameter settings.

# skytree-server gbt \

--training_in ranking.train.st \

--training_labels_in ranking.train.targets \

--holdout_ratio 0.3 \

--num_folds 10 \

--smart_search \

--smart_search_iterations 1000

Note: The above example performs smart search with a default testing objective of gini. The --testing_
objective option guides the sequence of parameters used during smart search and should be explicitly stated
if the desired objective is not the default (ginifor binary; accuracy for multi-class).

By default, smart search restricts the parameter space (for example, in --num_trees, --max_splits, --tree_
depth, etc.) in order to reduce the training time. If you do not want to restrict the upper bound for these parameters,
specify --limit_parameters=off.
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In some cases, users may want to input values for certain parameters and let GBT smart search tune over the rest.
Users can provide open or closed intervals for any tuning parameter using <min>:<max> or <min>: or :<max>. Specific
values at regular intervals can also be specified with <min>:<step>:<max>. For example:

• --num_trees=2:10 can be used to specify an interval.

• --num_trees=100: specifies a lower bound.

• --num_trees=10:10:100 & --num_trees=54 can be used to specify exact values to use during smart search.

Tunable intervals or exact values that are explicitly set will be passed to skytree-server. All other parameters will
be sampled during smart search.

Note: --smart_search cannot be used with --model_in. Similarly, --probability_threshold cannot be
specified with --smart_search because this option cannot be used during tuning.

Restarting Smart Search

There may be instances where you want to restart a smart search run. For example, if you initially specify to run 100
iterations, but after the program completes you want to run an additional 100 iterations. The --smart_search_
restart_out option allows you to specify a file name that saves the original smart search data. You can specify
this file using the --smart_search_restart_in option to continue iterations from the original run.

The example below creates a smart search output file named "ranking.50.restart".

# skytree-server gbt \

--training_in ranking.train.st \

--training_labels_in ranking.train.targets \

--holdout_ratio 0.3 \

--num_folds 10 \

--smart_search \

--smart_search_iterations 50 \

--smart_search_restart_out ranking.50.restart

The example above runs smart search with 50 iterations. The following example similarly specifies to run 100 smart
search iterations. In addition, the "ranking.50.restart" file is specified as an input file. Because this file already runs 50
iterations, this example will run a total of 150 smart search iterations.

Note: When using --smart_search_restart_in, the specified input data files must be the same as the data
specified in the original --smart_search_restart_out run.

# skytree-server gbt \

--training_in ranking.train.st \

--training_labels_in ranking.train.targets \

--smart_search_restart_in ranking.50.restart \

--smart_search \

--smart_search_iterations 100

Notice that only the smart search options and the input data files from the original run are required. Users can
specify additional options only if those options were specified in the original smart search run (for example, --num_
folds). In this case, the values for the options must match the original run.
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Fast Tree Construction

By default, trees of a GBT model are built using a fast heuristic method instead of exact split criterion. This feature is
enabled or disabled using the --regularization option. The regularization feature bins each dimension and then
splits tree nodes based on the resulting data. The number of bins used is controlled via the --regularization_
bins option; its default value is 200.

The fast method consumes less memory and allows each GBT to be built by multiple distributed processes. See
Running Distributed Jobs (page 173) for further information regarding running the fast method in distributed jobs.

Currently, the --trim option is not supported with the --regularization option.

Note: The --regularization option defaults to OFF for ensemble GBT/GBTR.

Ranking

Gradient Boosted Trees have been shown to be very successful at solving ranking problems in the information
retrieval domain, such as Web search results and recommendation engines. The GBT module can be used to create
models that can make use of labeled data in this domain to return accurate ranking of information given by a
particular query.

The prerequisites for using this form of GBT is that the training data must be divided into queries or groups. A query
or group is a set of documents or other information that was retrieved in the past, and some of these (represented as
rows in the dataset) were relevant while others were not. This can be considered in a binary setting, where documents
are marked 1 for relevant and 0 for not relevant or in a ranking setting where irrelevant documents are marked 0 and
relevant documents can have varying values of relevance depending on how relevant they were. For example in Web
searches, "clicks" can be represented as having a relevance of 1, "purchases" can have a relevance of 5, and no
activity must be set to have a relevance of 0.

The GBT module then can take training data that contains groups like these with each row labeled as explained
above to build a predictive model, then apply the results to a list of documents or information items, and rank them
according to the query. Finally, the results can be scored. Typically when scoring various information retrieval, metrics
can be used. The popular metrics (loss functions) for binary problems are Mean Reciprocal Rank (MRR) and Mean
Absolute Precision (MAP). For more general problems, Normalized Discounted Cumulative Gain (NDCG) is commonly
used.

Input format

The input format for the data is the same as that for GBT multi-class or binary classification with one difference: the
group IDs must be included in the third meta column of the ".st" file created by convert-data.sh. (Refer to Convert
Data (page 18).) This is easily achieved through the Data Preparation utilities by specifying the -id_index argument
and pointing that at the column that contains the group IDs in your raw data. The convert-data.sh process will
then automatically place the group IDs in the third column of the generated .st file. Refer to Identifying ID Columns
(page 20) for more information.

A Simple Example

A simple example to build a model, save it, and simultaneously apply the model to a test dataset is as follows.

# skytree-server gbt \
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--training_in ranking.train.st \

--training_labels_in ranking.train.labels \

--num_trees 100 \

--loss_function ndcg \

--model_out model \

--testing_in ranking.test.st \

--probabilities_out probabilities

The file "probabilities" will now contain the scores for all the input test points in "ranking.train.st". Note that group
information is not needed at this time. Group information is useful only when scoring is performed. An example of
scoring is as follows:

# skytree-server score-recommendation \

--true_labels_in ranking.test.targets \

--group_ids_in ranking.test.groupids \

--scores_in probabilities

Tuning Parameters

All tuning options available in the GBT module, such as cross-validation and holdout set tuning, are available when
ranking. The difference is that, while GBT for classification splits the training data by row, in ranking problems whole
groups must be split into training and tuning datasets. For example, if the training dataset contains 10,000 groups
and 1 million training points overall, then 5-fold cross validation will create training datasets with 8,000 groups and
tuning datasets with 2,000 groups. The number of rows in each dataset will depend on the group assignments and
should obey similar ratios for large datasets.

An example of tuning is as follows:

# skytree-server gbt \

--training_in ranking.train.st \

--training_labels_in ranking.train.targets \

--num_trees 100 \

--holdout_ratio 0.3 \

--learning_rate 0.1:0.05:0.3 \

--tree_depth 1,2,3 \

--loss_function ndcg

Tunable Parameters

Gradient Boosted Trees have the following tunable parameters (in addition to the options shown in the previous
section):

• --tree_depth: Depth to which each tree in the ensemble is built

• --max_splits: Number of leaf splits in each tree

• --learning_rate: Regularization parameter

• --regularization_bins: Number of bins used with --regularization

The following tunable parameters: --ensemble_size, --num_dimensions, --sampling_ratio, and
--imbalance_scale are part of the Ensemble Gradient Boosted Trees (page 92) method.
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Tuning the Tree Depth and Learning Rate

To tune the tree depth and the learning rate, specify either a comma-separated list of values, or a list of the form
<minimum value>:<step size>:<maximum value> for the --tree_depth and/or --learning_rate options.

If --tree_depth is not set, and values for --max_splits and --min_node_weight are likewise not set, then this
value defaults to 3.

If --tree_depth is explicitly set to 0, trees will be built to the fullest extent. In this case, you must specify a positive
value for either --max_splits or --min_node_weight.

The following command tunes for three parameters:

# skytree-server gbt \

--training_in income.data.st \

--training_labels_in income.data.labels \

--holdout_ratio 0.2 \

--num_trees 5:5:25 \

--tree_depth 2,3 \

--learning_rate 0.05:0.05:0.2

Tuning the Maximum Splits

The --max_splits option allows you to specify the number of splits in the tree. This option uses split priority to
build the trees rather than building depth first. A value > 0 must be specified for this option if --tree_depth is set to
0 and --min_node_weight is not specified.

# skytree-server gbt \

--training_in income.data.st \

--training_labels_in income.data.labels \

--num_folds 5 \

--num_trees 25,50 \

--max_splits 4

Offsets

In GBT and GBTR, the first tree typically acts as an offset. Skytree Server allows you change this behavior by
specifying an offset file to use when training, tuning, and testing.

An offset file is any single-column file, similar to targets, probabilities, and labels. The number of rows in the offset file
must match the number of points in the training/tuning/testing file. An offset file can be created using --scores_

out.

Note: Offsets can only be used with binary classification and logistic scoring.

# skytree-server gbt \

--training_in income.tune.st \

--training_labels_in income.tune.labels \

--testing_in income.test.st \

--scores_out income.test.offsets \

--num_trees 10
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The offset file can the be referenced when tuning, training, and testing. Note that the example below assumes that an
income.train.offsets file already exists.

# skytree-server gbt \

--training_in income.train.st \

--training_labels_in income.train.labels \

--training_offsets_in income.train.offsets \

--num_trees 10 \

--loss_function logistic \

--testing_in income.test.st \

--testing_offsets_in income.test.offsets \

--probabilities_out probabilities \

--labels_out labels \

--scores_out scores

Important Notes About Using Offsets

• In order to use offsets while tuning with --tuning_in, both --training_offsets_in and --tuning_

offsets_in must be specified.

• In order to use offsets during training/tuning and testing when training was done with offsets, then:

▪ --labels_out, --probabilites_out, and --targets_out will only work if the --testing_offsets_in
option is included;

▪ otherwise, if --testing_offsets_in is not included, then --scores_out can be specified to get an output.

• When testing with --model_in, the --testing_offsets_in option can be provided, but you will receive a
warning if:

▪ the input model was trained with offsets, but the --testing_offsets_in option was not provided,

▪ or the input model was trained without offsets, but the --testing_offsets_in option was provided.

In both of these above cases, Skytree Server will continue to run.

Model Visualization

The decision trees of a GBT model can be stored as files containing their JSON representations by specifying the
--visualization_out option along with a suitable directory.

The trees can be viewed in a Web browser after running the supplied mktreeviz.sh script. That script should be run
with the same directory argument that was given for the --visualization_out option.

The index.html file created in the directory provides links to individual tree HTML files.

Note: Column labels from your original CSV data files, if they exist, will appear in the trees if you have used the
data preparation tools from the current Skytree Server release. You may want to rerun those tools if you have
data files created by earlier versions of the data preparation tools.

Browser Security

Skytree Server visualizations are stored and viewed from your local file system. However, modern browsers limit or
restrict access to local files as a security precaution. If you are comfortable with circumventing those policies while
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viewing the visualizations, please follow the appropriate instructions for your browser, or if you have Python installed,
a local server can be used as described in the next section.

Running a Local Python Server

If you have Python installed, the simplest and probably most secure option, is to run a local Python server. To do so,
open a terminal and navigate to the directory with the visualization files. Then, for Python 2.x enter:

# python -m SimpleHTTPServer 9001

For Python 3.x enter:

# python -m http.server 9001

You will then be able to access the site through your browser, using:

http://localhost:9001

Note that you can substitute any port number in place of 9001.

Google Chrome

To allow Chrome access to your local files you will need to launch it from the command line as follows:

# chrome --allow-file-access-from-files

If you launch Chrome through a GUI shortcut, you can also edit that shortcut to include the additional flag: right-click
on Shortcut > Properties > Target.

Mozilla Firefox

To enable access to local files in Firefox:

Enter about:config in the address bar. Search for security.fileuri.strict_origin_policy and set its value
to false.

Apple Safari

To access files locally in Safari, you must turn on the Develop menu under Preferences > Advanced > Show develop
menu in menu bar.

You will now have an additional Develop menu in your toolbar. From this menu, toggle Disable local file restrictions. It
is also advisable to select Disable caches in order to prevent old data from persisting.

Ensemble Gradient Boosted Trees

The ensemble Gradient Boosted Tree (GBT) algorithm applies the concept of bootstrap aggregation (“bagging”) to
GBTs. The training table is sampled a number of times, and a new GBT is built for each sample.

The method is invoked using the same gbt module presented in the previous section but requires that --ensemble_
size (the number of GBTs to build) be specified:

# skytree-server gbt \
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--training_in income.data.st \

--training_labels_in income.data.labels \

--holdout_ratio 0.2 \

--ensemble_size 1:2:9 \

--num_dimensions 2:1:4 \

--min_node_weight 4 \

--num_trees 25

Note that the --num_trees option must also be given, and each GBT member of the ensemble will build that
specified number of trees. The --min_node_weight option specifies the minimum bound on the total weight in each
leaf during tree building.

Of course, the time required for building such a model may increase significantly in comparison to a single GBT
model, depending on the number of ensemble members specified.

Tunable Parameters

All GBT parameters presented in the previous section can also be tuned for ensemble GBTs. In addition, you can also
tune the --ensemble_size and the number of randomly selected dimensions (--num_dimensions) used for each
tree.

# skytree-server gbt \

--training_in income.data.st \

--training_labels_in income.data.labels \

--holdout_ratio 0.2 \

--ensemble_size 1:2:9 \

--num_dimensions 2:1:4 \

--num_trees 25

Note: Tuning differs slightly between ensemble and regular GBTs. For a single GBT, tuning the number of trees is
relatively inexpensive as scoring is done at intermediate stages while the algorithm builds towards the maximum
number of trees. This obviates the need to rebuild a full model for each --num_trees setting.

For GBT ensembles, the intermediate scoring is for ensemble members instead, i.e., for each full GBT. Tuning for
--ensemble_size is therefore inexpensive (and done automatically) while tuning for the number of trees
requires additional models to be fully built.

The tunable --sampling_ratio and --imbalance_scale options allow numerous smaller GBTs to be built on
down-sampled data. This may provide an effective model for skewed datasets. Typically we find that using the
--imbalance option along with --ensemble_size can give a boost in accuracy for highly skewed problems if the
right parameters are used for base GBTs.

Dimension Sampling

When using --num_dimensions with the RDFR, RDF, or Ensemble GBT modules, the way in which dimensions are
sampled can be controlled in two ways.

1. Uniform sampling: For all dimensions, select with a uniform random distribution whether the dimension are
continuous or categorical. In other words, given an example dataset with say 20 "real" and continuous
dimensions and 10 categorical dimensions, the chance of any dimension being selected if --num_dimensions is
set to 10 is 1/3. This feature is disabled by default and can be enabled by using --cardinality_based_

dimension_sampling=false.
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2. Cardinality based dimension sampling: This feature biases the sampling by making it more likely for categorical
dimensions with higher cardinality (i.e. that is those with a larger number of unique values in the node we are in)
to be picked during dimension selection for that node. Assume the same as the Uniform Sampling example, where
we have 30 dimensions in our dataset, of which 10 are continuous and 20 are categorical. Assume also that 10
of the categorical dimensions had 2 values each in the given node, and the other 10 had 4. In this case, the
categorical dimensions with 4 unique values would be twice as likely to be picked in dimension selection than the
rest of the categorical dimensions and would be 4 times as likely as any of the continuous dimensions. This
feature is enabled by default.

Random Decision Forest Regression

The Random Decision Forest Regression algorithm is an ensemble regression model comprising a collection of
regression trees. The ensemble returns predictions based on the average of the results of the individual trees. Each
tree in the forest is a weak regression model, trained by selecting a subset of the training data, usually with
replacement, and a random selection of the available features.

Each tree is grown using a sampling of the original training data. Nodes of the tree are split by considering a subset
of all features of the data and are grown without pruning.

Each ensemble regression prediction requires a regression prediction by each tree in the forest. The average of the
predictions of the individual trees determines the final prediction.

Several factors affect the error of the model. Strong individual trees in the ensemble decrease the error rate and occur
with a larger number of trees. However, a large number of trees also introduces correlated trees which increase the
error rate. For these reasons, among others, it’s important that the parameters of the Random Decision Forest
Regression model be tuned to provide the best possible error rate.

The rdfr module can be applied to regression problems.

To see all available options for the rdfr module, run:

# skytree-server rdfr --help

or refer to the Random Decision Forests Regression Options (page 312) in the Command Reference appendix.

The remainder of this section discusses features specific to Random Decision Forest Regression and explores how to
maximize prediction performance for your machine learning problem using these unique features.

Tunable Parameters

Random Decision Forest Regression has three tunable parameters in addition to the options shown in the previous
section:

• --tree_depth: This is the depth to which each tree in the ensemble is built. This is not a parameter that is
typically tuned in Random Decision Forest Regression but can be. If left to 0, the trees are built to full extent.

• --num_dimensions: The number of dimensions that should be sampled at any given tree node for finding a
node partition.

• --sampling_ratio: This is the ratio to which the data is down-sampled or up-sampled for each decision tree
construction. Because Random Decision Forests require sampling, if --sample_with_replacement=off, the
--sampling_ratio option is mandatory and should be set to a real number between 0 and 1. By default, the
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sampling ratio is set to 1 and the sampling is done with replacement (that is, --sample_with_
replacement=on).

• --min_node_weight: The minimum bound on the total weight in each leaf during tree building

Tuning the Number of Dimensions

In addition to tuning the number of trees for example, the number of randomly selected dimensions considered in
splitting each tree node may also be tuned. By default, the rdfr module uses (D/3) dimensions, where D is the total
number of attributes in the dataset. To change this behavior, use --num_dimensions to specify the number of
dimensions. To consider the parameter in tuning, specify a range:

# skytree-server rdfr \

--training_in income.data.st \

--training_targets_in income.data.targets \

--holdout_ratio 0.2 \

--num_trees 100 \

--num_dimensions 1:1:4

Dimension Sampling

When using --num_dimensions with the RDFR, RDF, or Ensemble GBT modules, the way in which dimensions are
sampled can be controlled in two ways.

1. Uniform sampling: For all dimensions, select with a uniform random distribution whether the dimension are
continuous or categorical. In other words, given an example dataset with say 20 "real" and continuous
dimensions and 10 categorical dimensions, the chance of any dimension being selected if --num_dimensions is
set to 10 is 1/3. This feature is disabled by default and can be enabled by using --cardinality_based_

dimension_sampling=false.

2. Cardinality based dimension sampling: This feature biases the sampling by making it more likely for categorical
dimensions with higher cardinality (i.e. that is those with a larger number of unique values in the node we are in)
to be picked during dimension selection for that node. Assume the same as the Uniform Sampling example, where
we have 30 dimensions in our dataset, of which 10 are continuous and 20 are categorical. Assume also that 10
of the categorical dimensions had 2 values each in the given node, and the other 10 had 4. In this case, the
categorical dimensions with 4 unique values would be twice as likely to be picked in dimension selection than the
rest of the categorical dimensions and would be 4 times as likely as any of the continuous dimensions. This
feature is enabled by default.

Tuning the Sampling Ratio

As with all other tuning parameters, the sampling ratios can be specified with a comma-separated list of values or a
list of the form <minimum value>:<step size>:<maximum value>. For example, the sampling ratio can be tuned
over the values 0.2, 0.3, 0.4, 0.5 with

# skytree-server rdfr \

--training_in income.data.st \

--training_targets_in income.data.targets \

--holdout_ratio 0.2 \

--num_trees 100 \

--sampling_ratio 0.2,0.3,0.4,0.5

or with
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# skytree-server rdfr \

--training_in income.data.st \

--training_targets_in income.data.targets \

--holdout_ratio 0.2 \

--num_trees 100 \

--sampling_ratio 0.2:0.1:0.5

Sparse Data

The rdfr module is capable of accelerated and more memory efficient execution for sparse datasets. No special
options need to be set to enable sparse operation. Rather, if the input datasets (--training_in, --tuning_in,
and --testing_in) are represented in the sparse file format given in Skytree Server File Format (page 9), then rdfr

will employ a more compact internal representation of the sparse data. Note, however, that if any of --training_in,
--tuning_in, or --testing_in is represented as sparse, then all of them must be represented as sparse.
Additionally, saved models trained from data stored in the sparse format may only be used to predict on testing sets
also stored in the sparse format, and likewise for dense.

Using Less Memory

You can use the --num_cached_trees option to limit the amount of memory used by the rdfr module. Lowering
this option's value results in lower memory usage at the expense of increased runtime.

Gradient Boosted Trees Regression

Gradient Boosted Trees Regression is a machine learning algorithm combining regression trees with boosting. The
latter is a numerical gradient optimization method that minimizes a loss function, in this case, the deviance.

The optimization is achieved by successively adding trees that best reduce the loss function. The first tree reduces
the loss function to the greatest extent possible, while subsequent trees focus on a residual that represents the
poorest responses of the model.

As the boosting iteration proceeds, the algorithm adjusts the relative weighting of each tree without modifying the
previous trees themselves. The resulting model is a linear combination of all trees.

The gbtr module can be applied to regression problems.

To see all available options for the gbtr module, run:

# skytree-server gbtr --help

or refer to Gradient Boosted Trees Regression Options (page 259) in the Command Reference appendix.

The remainder of this section discusses some of the features unique to Gradient Boosted Trees Regression and
explores how to maximize regression performance for your machine learning problem using these unique features.

Smart Search

In the case where users might not know the best configuration options to specify in order to train and tune a model,
or in the case where users want to repeat an experiment, GBTR allows for hyper-parameter optimization (smart
search).
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With a series of --smart_search options, users need only specify the training set and model validation options
(tuning dataset, holdout ratio, number of folds, etc.), and GBTR will automatically search for the best parameter
settings without any additional required input from the user. When scoring, smart search will tune over the
--testing_objective while reporting additional scores.

The example below specifies to try 1000 different parameter settings.

# skytree-server gbtr \

--training_in income.train.st \

--training_targets_in income.train.targets \

--holdout_ratio 0.3 \

--num_folds 10 \

--smart_search \

--smart_search_iterations 1000

Note: The above example performs smart search with a default testing objective of mean_absolute_error. The
--testing_objective option guides the sequence of parameters used during smart search and should be
explicitly stated if the desired objective is not the default.

By default, smart search restricts the parameter space (for example, in --num_trees, --max_splits, --tree_
depth, etc.) in order to reduce the training time. If you do not want to restrict the upper bound for these parameters,
specify --limit_parameters=off.

In some cases, users may want to input values for certain parameters and let GBTR smart search tune over the rest.
Users can provide open or closed intervals for any tuning parameter using <min>:<max> or <min>: or :<max>. Specific
values at regular intervals can also be specified with <min>:<step>:<max>. For example:

• --num_trees=2:10 can be used to specify an interval.

• --num_trees=100: specifies a lower bound.

• --num_trees=10:10:100 & --num_trees=54 can be used to specify exact values to use during smart search.

Tunable intervals or exact values that are explicitly set will be passed to skytree-server. All other parameters will
be sampled during smart search.

Note: When performing a GBTR smart search run without specifying a --loss_function, Skytree Server will
automatically tune over all loss function types except gminv. You can only tune over gminv by explicitly
specifying --loss_function=gminv in the command. Refer to Loss Function (page 101) for more information
about the available --loss_function options.

Restarting Smart Search

There may be instances where you want to restart a smart search run. For example, if you initially specify to run 100
iterations, but after the program completes you want to run an additional 100 iterations. The --smart_search_
restart_out option allows you to specify a file name that saves the original smart search data. You can specify
this file using the --smart_search_restart_in option to continue iterations from the original run.

The example below creates a smart search output file named "income.50.restart".

# skytree-server gbtr \

--training_in income.data.st \
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--training_targets_in income.train.targets \

--holdout_ratio 0.3 \

--num_folds 10 \

--smart_search \

--smart_search_iterations 50 \

--smart_search_restart_out income.50.restart

The example above runs smart search with 50 iterations. The following example similarly specifies to run 100 smart
search iterations. In addition, the "income.50.restart" file is specified as an input file. Because this file already
runs 50 iterations, this example will run a total of 150 smart search iterations.

Note: When using --smart_search_restart_in, the specified input data files must be the same as the data
specified in the original --smart_search_restart_out run.

# skytree-server gbtr \

--training_in income.train.st \

--training_targets_in income.train.targets \

--smart_search_restart_in income.50.restart \

--smart_search \

--smart_search_iterations 100

Notice that only the smart search options and the input data files from the original run are required. Users can
specify additional options only if those options were specified in the original smart search run (for example, --num_
folds). In this case, the values for the options must match the original run.

Fast Tree Construction

By default, trees of a GBTR model are built using a fast heuristic method instead of exact split criterion. This feature
is enabled or disabled using the --regularization option. The regularization feature bins each dimension and
then splits tree nodes based on the resulting data. The number of bins used is controlled via the
--regularization_bins option; its default value is 200.

The fast method consumes less memory and allows each GBTR to be built by multiple distributed processes. See
Running Distributed Jobs (page 173) for further information regarding running the fast method in distributed jobs.

Tunable Parameters

Gradient Boosted Trees Regression has four more tunable parameters (in addition to the options described
previously):

• --tree_depth: This is the depth to which each tree in the ensemble is built. The default tree depth is set to 3.

• --max_splits: Number of leaf splits in each tree

• --learning_rate: A regularization parameter

• --sampling_ratio: This is the ratio to which the data is down-sampled or up-sampled for the construction of
each decision tree in the ensemble. Gradient Boosted Regression does not involve any sampling by default.
Setting --sampling_ratio invokes Stochastic Gradient Boosted Regression. If --sampling_ratio is set along
with --sample_with_replacement=off, the --sampling_ratio should be set to a real number between 0
and 1. By default, the sampling is done with replacement (that is, --sample_with_replacement=on).
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• --min_node_weight: The minimum bound on the total weight in each leaf during tree building

• --regularization_bins: Number of bins used with --regularization

Similar to the case of classification, the Ensemble Learning methods allow the user to “bag” (bootstrap aggregate)
multiple Gradient Boosted Regressors. The following are the tunable parameters specific to Ensemble Gradient
Boosted Regressors. (See Ensemble Gradient Boosted Trees (page 92) for further details on “bagging” GBTs.)

• --ensemble_size: The number of gradient boosted regressors to aggregate.

• --num_dimensions: The number of dimensions that should be sampled at any given node for finding a node
partition. By default, all the dimensions are chosen to find an appropriate partition. This option can only be used
in conjunction with the --ensemble_size option.

• --sampling_ratio: The behavior of this option changes if used with --ensemble_size. In this case, the
sampling ratio corresponds to the size of the random sample of the data on which a complete Gradient Boosted
Regressor is learned. If --ensemble_size is set, the default --sampling_ratio is set to 1 and the sampling is
done with replacement.

Tuning the Tree Depth and Learning Rate

To tune the tree depth and learning rate, specify either a comma-separated list of values, or a list of the form
<minimum value>:<step size>:<maximum value> for the --tree_depth and/or --learning_rate options.

If --tree_depth value is not set, and values for --max_splits and --min_node_weight are likewise not set, then
this value defaults to 3.

If --tree_depth is explicitly set to 0, trees will be built to the fullest extent. In this case, you must specify a positive
value for either --max_splits or --min_node_weight.

# skytree-server gbtr \

--training_in income.data.st \

--training_targets_in income.data.targets \

--holdout_ratio 0.2 \

--num_trees 5:5:25 \

--tree_depth 2,3 \

--learning_rate 0.05:0.05:0.2

Tuning the Maximum Splits

The --max_splits option allows you to specify the number of splits in the tree. This option uses split priority to
build the trees rather than building depth first. A value > 0 must be specified for this option if --tree_depth is set to
0 and --min_node_weight is not specified.

# skytree-server gbtr \

--training_in income.data.st \

--training_labels_in income.data.labels \

--num_folds 5 \

--num_trees 25,50 \

--max_splits 4 \

Tuning the Sampling Ratio

As with all other tuning parameters, the sampling ratios can be specified with a comma-separated list of values or a
list of the form <minimum value>:<step size>:<maximum value>. For example, the sampling ratio can be tuned
over the values 0.2, 0.3, 0.4, 0.5 with
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# skytree-server gbtr \

--training_in income.data.st \

--training_targets_in income.data.targets \

--num_folds 5 \

--num_trees 10 \

--sampling_ratio 0.2,0.3,0.4,0.5

or with

# skytree-server gbtr \

--training_in income.data.st \

--training_targets_in income.data.targets \

--num_folds 5 \

--num_trees 10 \

--sampling_ratio 0.2:0.1:0.5

Offsets

In GBT and GBTR, the first tree typically acts as an offset. Skytree Server allows you change this behavior by
specifying an offset file to use when training, tuning, and testing.

An offset file is any single-column file, similar to targets, probabilities, and labels. The number of rows in the offset file
must match the number of points in the training/tuning/testing file. An offset file can be created using --scores_

out.

Note: Offsets can only be used with binary classification and logistic scoring.

# skytree-server gbtr \

--training_in income.tune.st \

--training_labels_in income.tune.labels \

--testing_in income.test.st \

--scores_out income.test.offsets \

--num_trees 10

The offset file can the be referenced when tuning and training. Note that the example below assumes that an
income.train.offsets file already exists.

# skytree-server gbtr \

--training_in income.train.st \

--training_labels_in income.train.labels \

--training_offsets_in income.train.offsets \

--num_trees 10 \

--loss_function logistic \

--testing_in income.test.st \

--testing_offsets_in income.test.offsets \

--probabilities_out probabilities \

--labels_out labels \

--scores_out scores
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Important Notes About Using Offsets

• In order to use offsets while tuning with --tuning_in, both --training_offsets_in and --tuning_

offsets_in must be specified.

• In order to use offsets during training/tuning and testing when training was done with offsets, then:

▪ --labels_out, --probabilites_out, and --targets_out will only work if the --testing_offsets_in
option is included;

▪ otherwise, if --testing_offsets_in is not included, then --scores_out can be specified to get an output.

• When testing with --model_in, the --testing_offsets_in option can be provided, but you will receive a
warning if:

▪ the input model was trained with offsets, but the --testing_offsets_in option was not provided,

▪ or the input model was trained without offsets, but the --testing_offsets_in option was provided.

In both of these above cases, Skytree Server will continue to run.

Loss Function

In GBTR, the default loss function method performs least absolute deviation (lad). Certain cases can exist, however,
in which the median starting value for this loss function can lead to poor results (for example, if the median is the
lowest or highest value in the tree node). The --loss_fuction option allows you to specify a different method to
use when performing regression. Available methods include least-squares (ls), Huber (huber), Poisson-log (pslog),
Gamma-log (gmlog), and Gamma-inverse (gminv), or Tweedie distribution (tdlog).

When tdlog is specified, users must also specify a --tweedie_exponent value. Users can tune over this option
with values > 1.0 and < 2.0.

When huber is specified, you can optionally set the top percentile of error that should be considered as outliers. This
value must be between 0 and 1 and defaults to 0.9.

When lad or huber is specified, then the --approximate_quantiles flag becomes enabled. This allows for an
error tolerance of .001 for quantiles on loss functions. For example, if you specify a --huber_loss_quantile of .33,
then quantiles ranging from .329 to .331 will also be included.

When pslog, gmlog, or tdlog is specified, users can optionally define a --log_clamp value that is > 0. The --log_
clamp value defaults to 20. When used for tuning, the output file will have extra columns for these options.

The example below shows how to specify the least-squares --loss_function.

# skytree-server gbtr \

--training_in income.data.st \

--training_targets_in income.data.targets \

--holdout_ratio 0.2 \

--num_trees 5:5:25 \

--loss_function ls \

--model_out model.simple \

--targets_out targets.gbtr
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Model Visualization

Similar to GBT, GBTR models can also be visualized. Refer to Model Visualization (page 91) for more information.

PMML Model Export

Trained ensemble models can be exported into PMML (Predictive Model Markup Language) format using the
--pmml_out option. This allows the use of an external code for scoring.

Note: The PMML file that is produced requires that missing values are encoded as '?'. This is a reserved symbol
for missing values, and as such, should not be used anywhere else in your data.

For more information on PMML format, please refer to the PMML 4.2 section on the Data Mining Group Web site
(http://www.dmg.org/v4-2/GeneralStructure.html).

Refer to the sections that follow for additional information and usage restrictions.

Random Decision Forests - Classification and Regression

To export in PMML format, use the following option with RDF or RDFR:

--pmml_out=<file>

The resulting model uses confidence rather than probability to express each leaf’s ScoreDistribution elements.
Confidence is different from probability in that the confidences of all classes do not necessarily sum to one, and in
fact nodes can have confidence values that are greater than one.

Given a query point, prediction is performed by, for each class, summing the confidences at the leaf nodes
encountered by the query point in all the trees. Then, the posterior probability of a given class is found by dividing
that class’s total confidence by the sum of all classes’ confidences. Alternately, the class with the largest overall
confidence may be taken as the query point’s predicted class.

All options available for RDF and RDFR are available for PMML output.

For RDF models, the labels column is included in the PMML output. This is configured using the --probability_
threshold parameter. If this is not specified when tuning a model, then it is set to the optimal probability threshold
chosen by the model. If this is not specified, and tuning is not performed, then this value is set to 0.5.

Note: The size of the resulting PMML file is dependent on the number and depth of the trees. It may be very large.

Gradient Boosted Trees - Classification and Regression

As with RDF, to export in PMML format, use the following option with GBT and GBTR:

--pmml_out=<file>

In order to compute scores for the model, scores of all the trees in the model have to be summed. A function is then
applied to the resulting sum. The function is provided under the node
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<PostProcessor>

<![CDATA[(1/(1 + e^(-2*s)))]]>

</PostProcessor>

in the PMML file itself. The symbol s in the function refers to the sum of the scores of all the trees.

All options available for GBT are available for PMML output except for ranking functions (i.e., if --loss_function is
specified as other than logistic (default)). In addition, the labels column is included in the PMML output. This is
configured using the --probability_threshold parameter. If this is not specified when tuning a model, then it is
set to the optimal probability threshold chosen by the model. If this is not specified, and tuning is not performed, then
this value is set to 0.5.

All options available for GBTR are available for PMML output.

Ensemble Gradient Boosted Trees

The PMML option --pmml_out=<file> can also be used with Ensemble GBT, i.e., in combination with the
--ensemble_size=n option.

Because Ensemble GBT applies the concept of “bagging”, the resulting models have sets of GBTs. Unfortunately, the
standard PMML format does not currently support the concept of multiple models with a depth of hierarchy greater
than one. In order to overcome this limitation we introduce custom PMML to correctly represent that model.

In the PMML export of Ensemble GBT, we embed a complete GBT within each <Segment> by introducing another
level of <Segmentation>. Each GBT within a <Segment> block has its own <PostProcessor>, which is used to
compute result of that ensemble. The results of all GBTs can then be averaged to get the final answer.

AutoModel Module

Some users want control over the parameters that are included when training and testing models for predictions.
Other users may be uncertain about which parameters to include. For these users, the automodel module provides
the convenience of performing an all-method smart search with minimal required parameter input. Users need only
specify the training set and model validation options (tuning dataset, holdout ratio, number of folds, etc.), and
automodel will automatically search for the best parameter setting without any additional required input from the
user. In addition, automodel can also determine whether to solve a classification or regression problem based on
whether the user specifies labels or targets.

Users still have the ability to specify additional parameters when running automodel. By default, automodel
restricts the parameter space (for example, in --num_trees, --max_splits, --tree_depth, etc.) in order to reduce
the training time. If you do not want to restrict the upper bound for these parameters, specify --limit_
parameters=off.

To see all available options for the automodel module, run:

# skytree-server automodel --help

or refer to AutoModel Options (page 208) in the Command Reference appendix.

Note: Because automodel always performs an all-method smart search, the --smart_search option is always
ON. Attempting to turn this OFF will have no effect.

Chapter 5 Prediction Confidential Skytree Server User Guide | 103



Classification with AutoModel

The automodel module can be used for generating models (via --model_out) or for testing (via --testing_in).
The following classification example shows how to use automodel to train a model over 10 folds. When training
models, the --model_out option is required.

# skytree-server automodel \

--training_in ranking.train.st \

--training_labels_in ranking.train.targets \

--num_folds 10 \

--model_out ranking.model

Regression with AutoModel

The following example shows how to build a simple model and save it to a file. The automodel module automatically
recognizes this as a regression problem when target files are specified.

# skytree-server automodel \

--training_in income.data.st \

--training_targets_in income.data.targets \

--testing_in income.test.st \

--num_trees 100 \

--model_out model.simple \

--targets_out targets.predict

Training and Testing a Model

The following example shows how to train and test a model using automodel. In this case, --model_out is
optional. The tuning option used for this example is --holdout_ratio.

# skytree-server automodel \

--training_in ranking.train.st \

--training_labels_in ranking.train.targets \

--testing_in ranking.test.st \

--holdout_ratio 0.3 \

--num_trees 100 \

--model_out ranking.model

Testing Objectives

Similar to other ensemble modules, the automodel module allows you to explicitly set a testing objective to use
during tuning. automodel will tune over the --testing_objective while reporting additional scores.

The following example shows how to explicitly set the --testing_objective to accuracy during tuning.

# skytree-server automodel \

--training_in ranking.train.st \

--training_labels_in ranking.train.targets \

--num_folds 10 \
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--model_out ranking.model \

--testing_objective accuracy

The available --testing_objective options vary depending on whether the problem is a classification or
regression problem. Refer to AutoModel Options (page 208) in the Command Reference appendix for usage
information. An error will occur if you attempt to include a classification testing objective in a regression problem and
vice versa.

Saving Models

All of the models trained for each of the parameter settings can be saved with the --tuning_models_out option.
This can only be used when a validation set is provided for tuning (i.e, when the --tuning_in and the --tuning_
labels_in options are specified). The resulting tuning index file is reported in JSON format.

# skytree-server automodel \

--training_in income.data.st \

--training_labels_in income.data.labels \

--tuning_in income.tune.st \

--tuning_labels_in income.tune.labels \

--num_trees 100 \

--model_out model.simple \

--tuning_models_out income.tune.models

Saving Tuning Results

Tuning results can be saved to a file using the --tuning_results_out option. The results include the module to
which the model belongs as well as a list of the parameters that were used. The output file is reported in
JSON format.

# skytree-server automodel \

--training_in ranking.train.st \

--training_labels_in ranking.train.targets \

--num_trees 10 \

--model_out ranking.model \

--tuning_results_out ranking.results

Computing Labels

The following example shows how to use automodel for testing a model and outputting the computed labels. In this
case, --model_in is required.

# skytree-server automodel \

--model_in model.simple \

--testing_in income.test.st \

--labels_out labels.simple
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Restarting Smart Search

Similar to --smart_search in gbt and gbtr, the automodel module allows you to specify the number of smart
search iterations to run. In this case, there may be instances where you want to restart an automodel module project.
The --smart_search_restart_out option allows you to specify a file name that saves the original smart search
data. Once created, you can specify this file using the --smart_search_restart_in option to continue iterations
from the original run.

The example below creates a smart search output file named "ranking.50.restart".

# skytree-server automodel \

--training_in ranking.train.st \

--training_labels_in ranking.train.targets \

--holdout_ratio 0.3 \

--num_folds 10 \

--smart_search_iterations 50 \

--smart_search_restart_out ranking.50.restart

The example above runs smart search with 50 iterations. The following example similarly specifies to run 100 smart
search iterations. In addition, the "ranking.50.restart" file is specified as an input file. Because this file already
runs 50 iterations, this example will run a total of 150 smart search iterations.

Note: When using --smart_search_restart_in, the specified input data files must be the same as the data
specified in the original --smart_search_restart_out run.

# skytree-server automodel \

--training_in ranking.train.st \

--training_labels_in ranking.train.targets \

--smart_search_restart_in ranking.50.restart \

--smart_search_iterations 100

Notice that only the smart search options and the input data files from the original run are required. Users can
specify additional options only if those options were specified in the original smart search run (for example, --num_
folds). In this case, the values for the options must match the original run.

PMML Model Export

Trained AutoModel models can be exported into PMML (Predictive Model Markup Language) format using the
--pmml_out option. This allows the use of an external code for scoring.

Note: The PMML file that is produced requires that missing values are encoded as '?'. This is a reserved symbol
for missing values, and as such, should not be used anywhere else in your data.

For classification models, the labels column is included in the PMML output. This is configured using the
--probability_threshold parameter. If this is not specified when tuning a model, then it is set to the optimal
probability threshold chosen by the model. If this is not specified, and tuning is not performed, then this value is set to
0.5.

For more information on PMML format, please refer to the PMML 4.2 section on the Data Mining Group Web site
(http://www.dmg.org/v4-2/GeneralStructure.html).
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Support Vector Machines

The Support Vector Machine (http://en.wikipedia.org/wiki/Support_vector_machine) (SVM) is one of the most
successful classification algorithms. It is based on the revolutionary theory of kernel learning. The main concept is
that SVM tries to fit a hyperplane that optimally separates different classes of data. The hyperplane can be linear or
nonlinear.

• Find the best boundary to separate points into two classes

• Maps points onto a high-dimensional space so that it can learn complex nonlinear decision boundaries

• If no perfect separation, maximizes the margin

• An advantage is no local-minimum situations

• Naively scales as N2-N3; Skytree Server scaling is data dependent

Overview

The SVM is a form of linear classifier, though it can work efficiently in infinite-dimensional kernel spaces to learn
detailed, nonlinear decision boundaries. We are given a set of points R = {(x1;y1) ... (xn;yn)}, where each yi∈ {-1,1} is the
class label for the i-th point xi∈RD. SVM learns a linear discriminant function y x sgn w ϕ x b^ ( ) = ( ( ) + )T where
ϕ : RD→ H is a mapping from the input space to a feature space H. Here the learning implies computing w and b, the
linear hyperplane that best separates the training examples with the label -1 and the ones with the label 1. The
mapping ϕ could be chosen explicitly or be implicitly induced by a kernel function.

The training set is said to be linearly separable when there exists a linear discriminant function whose sign matches
the class of all training examples:

∀y x y i N^ ( ) = 1 ≤ ≤i i

A linearly separable data usually allows an infinite number of separating hyperplanes. Therefore, the hyperplane that
maximizes the margin is chosen to predict better on unseen examples. The figure below shows the optimal
hyperplane separating positive and negative examples with the maximal margin. The position of the hyperplane is
solely determined by the few examples that are closest to it (the support vectors).

Figure 4: Optimal hyperplane
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The following optimization problem expresses this choice.
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Directly solving this problem is difficult because the constraints are quite complex. The mathematical tool of choice
for simplifying this problem is the Lagrangian duality theory. This approach leads to solving the following dual
problem:
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The linear discriminant function can then be written as:

∑y x w x b y α ϕ x ϕ x b^ ( ) =
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The dual optimization problem and the linear discriminant function only involve the patterns x through the
computation of dot products in feature space. There is no need to compute the features ϕ(x) when one knows how to
compute the dot products directly and the resulting optimization problem is convex.

Instead of hand-choosing a feature function ϕ(x), it has been proposed to directly choose a kernel function K (x; x′)
that represents a dot product ϕ(x)T ϕ(xʹ ). K (x; x′) induces a mapping from the original input space to a possibly high-
dimensional feature space. Although the corresponding feature space could be infinite-dimensional, all computations
can be performed without ever computing a feature vector ϕ(x). Complex nonlinear classifiers are computed using the
linear mathematics of the optimal hyperplanes and this is referred to as the kernel trick.

Soft margins can be used in case the problem is noisy. If there exists no hyperplane that can split the “yes” and “no”
examples, the Soft Margin method will choose a hyperplane that splits the examples as cleanly as possible, while still
maximizing the distance to the nearest cleanly split examples. Further discussion of this topic is beyond the scope of
this document. For more information on soft margins (http://en.wikipedia.org/wiki/Support_vector_machine#Soft_
margin) and SVMs you may refer to [steinwart2008support].

Support Vector Machines are becoming more and more successful in business applications, [min2005bankruptcy],
[van-bayesian].

Computational Complexity

The number of support vectors finally produced by the optimization is the critical component of the computational
cost of solving the dual problem. Since the asymptotic number of support vectors grows linearly with the number of
examples, the computational cost of solving the SVM problem has both a quadratic and a cubic component. Thus
computational complexity is at least O(N2) but tends towards O(N3) for noisy problems. Empirical evidence shows
that modern SVM solvers come close to these scaling laws.

• Kernels are expensive to compute. For example, the computation of the Gaussian kernel e γ d− ( )
2

, where d is the
distance between two observations, is an expensive operation taking many processor cycles.
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• The size of the kernel matrix is N2. For even medium sized datasets storing this in memory becomes prohibitive.

The most successful methods available today fall into the category of decomposition methods. They address the full-
scale dual problem by solving a sequence of smaller quadratic programming sub-problems. The core of these
methods is that they use small sized working sets, as few as two elements, and solve the corresponding optimization
problem analytically. This choice dramatically simplifies the decomposition method.

SVM Usage Examples

Information on how to obtain the sample datasets used in the examples can be found in datasets. You can run the
following command to see the options available for SVM:

# skytree-server svm --help

Note: The file format expected is the Skytree Server file format. Any CSV file can easily be converted to this format
using a single command and the conversion tools that are provided. Refer to Skytree Server File Format (page 9)
for more information.

Training and Testing a Linear SVM

The following command trains an SVM model using a linear kernel with a regularization parameter 0.1 and then
predicts the labels for a test set using the trained model:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--lambda 0.1 \

--testing_in sdss.test.st \

--labels_out sdss.test.labels.lsvm.0.1

This trains an SVM model with a bias term and the linear kernel for a regularization of 0.1 on sdss.train.st. Once
the model is trained, the labels for the test set sdss.test.st are evaluated using this learned model and output in
sdss.test.labels.lsvm.0.1. The kernel type is linear by default. The SVM model also uses a bias term by
default. Hence the following command explicitly sets these values but is equivalent to the above in behavior:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--lambda 0.1 \

--kernel linear \

--exclude_bias_term off \

--testing_in sdss.test.st \

--labels_out sdss.test.labels.lsvm.0.1

The bias term can be removed from the linear SVM formulation with the following command:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \
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--lambda 0.1 \

--exclude_bias_term \

--testing_in sdss.test.st \

--labels_out sdss.test.labels.lsvm.0.1

A trained linear SVM model can be saved for later use in the following way:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--lambda 0.1 \

--model_out sdss.lsvm.model.0.1

This will save the linear SVM model in a file named sdss.lsvm.model.0.1. Once the model is saved, it can be used
later for testing in the following manner:

# skytree-server svm \

--model_in sdss.lsvm.model.0.1 \

--testing_in sdss.test.st \

--labels_out sdss.test.labels.lsvm.0.1

Tuning a Linear SVM

We allow the tuning of the regularization parameter --lambda in the SVM formulation. The following command
returns the 10-fold cross-validated scores for the regularization parameter at 0.01,0.1,1.0,10.0 and selects the
setting with the best cross-validated accuracy:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--lambda 0.01,0.1,1,10 \

--num_folds 10

The regularization parameters can also be provided in the form of a range <min>:<step-size>:<max>. The
following command will tune for the best regularization value among 0.1,0.2,0.3,0.4,0.5:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--lambda 0.1:0.1:0.5 \

--num_folds 10

Monte Carlo cross-validation can be used instead of k-fold by specifying the --holdout_ratio in conjunction with
the --num_folds. If --num_folds=10 and --holdout_ratio=0.2 then a random 20% of the training data would
be heldout in each fold as the validation set. A validation set can also be provided by the user using the --tuning_
in and the --tuning_labels_in options in the following way:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--lambda 0.1:0.1:0.5 \
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--tuning_in sdss.tune.st \

--tuning_labels_in sdss.tune.labels

All of the linear SVM models trained for each of the parameter settings can be saved with the --tuning_models_
out option. This can only be used when a validation set is provided for tuning (i.e, when the --tuning_in and the
--tuning_labels_in options are specified).

The tuning results with the scores for each of the parameter settings can be saved to a file using the --tuning_
results_out option. By default, the format for the output file is CSV. Users can change this to JSON format using
the --tuning_results_format option.

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--lambda 0.1:0.1:0.5 \

--num_folds 10 \

--tuning_results_out sdss.svm.tune.results \

--tuning_results_format json

Note: The JSON format is of the following form:
[

{ "Parameters" : { ... }, "Metrics" : { ... }},

...

{ "Parameters" : { ... }, "Metrics" : { ... }}

]

Tuning and Testing a Linear SVM

Following tuning, the model with the best parameter setting can be used for predicted the labels for a test set in the
following manner:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--lambda 0.1:0.1:0.5 \

--num_folds 10 \

--testing_in sdss.test.st \

--labels_out sdss.test.labels.lsvm

The linear SVM model with the best parameter setting in tuning can also be saved with the --model_out option for
later prediction in the following manner:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--lambda 0.1:0.1:0.5 \

--num_folds 10 \

--testing_in sdss.test.st \

--labels_out sdss.test.labels.lsvm
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Training and Testing a Non-Linear SVM

The following command creates an SVM model using the radial-basis function (RBF) kernel (also known as the
Gaussian kernel) with a bandwidth 10 with a regularization parameter 0.1 and then predicts the labels for a test set
using the trained model:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--kernel rbf \

--rbf_bandwidth 10.0 \

--lambda 0.1 \

--testing_in sdss.test.st \

--labels_out sdss.test.labels.rbf.10.svm.0.1

A polynomial kernel K is defined as K (x, y) = s * xT y+t)d, where d is the degree, s is the scale and t is the offset of the
polynomial kernel. A polynomial kernel with degree 2 (with a default scale 1.0 and default offset 0.0) can be used in
the following manner:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--kernel polynomial \

--polynomial_degree 2 \

--lambda 0.1 \

--testing_in sdss.test.st \

--labels_out sdss.test.labels.poly.2.svm.0.1

The bias term in the nonlinear SVM formulation can be removed with the --exclude_bias_term option similar to
linear SVM.

A trained linear SVM model can be saved for later use in the following way:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--kernel rbf \

--rbf_bandwidth 1.0 \

--lambda 0.1 \

--model_out sdss.lsvm.model.0.1

This will save the linear SVM model in a file named sdss.lsvm.model.0.1. Once the model is saved, it can be used
later for testing in the following manner:

# skytree-server svm \

--model_in sdss.lsvm.model.0.1 \

--testing_in sdss.test.st \

--labels_out sdss.test.labels.lsvm.0.1

The model can also be saved and loaded when running a distributed (polynomial) Skytree Server job.

# skytree-server svm \
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--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--kernel polynomial \

--polynomial_degree 3 \

--polynomial_offset 1.0 \

--polynomial_scale 0.01 \

--lambda 0.1 \

--model_out sdss.lsvm.model.0.1 \

--hosts host1,host2,host3

# skytree-server svm \

--model_in sdss.lsvm.model.0.1 \

--testing_in sdss.test.st \

--labels_out sdss.test.labels.poly.2.svm.0.1 \

--hosts host1,host2,host3

Tuning a Non-Linear SVM

Along with the regularization parameter --lambda, the user can also tune over various kernel parameters. For the
RBF kernel, the svm module allows tuning over the bandwidth (via the --rbf_bandwidth option). For the polynomial
kernel, this module allows tuning over the degree, scale, and the offset (via the --polynomial_degree,
--polynomial_scale, and --polynomial_offset).

For example, we can tune over regularization values 0.01,0.1 and RBF kernels with bandwidths 0.1,1.0,10.0 (for
a total of 6 parameters settings) with the following:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--lambda 0.01,0.1 \

--kernel rbf \

--rbf_bandwidth 0.1,1,10 \

--num_folds 10

The polynomial kernel parameters can be tuned over in a similar manner. The tuning options can used in a manner
similar to the examples presented for the linear SVM.

Tuning and Testing a Non-linear SVM

Following tuning, the non-linear SVM model with the best parameter setting can be used for predicting the labels for
a test set in the following way:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--lambda 0.01,0.1 \

--kernel rbf \

--rbf_bandwidth 0.1,1,10 \

--num_folds 10 \

--testing_in sdss.test.st \

--labels_out sdss.test.labels.rbf.svm
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The Probability Threshold

The predicted class label is derived from the probabilities generated for being of a particular class type. For example
the probabilities that are output by svm are the probability of being class +1.

Typically, if for any given point, the probability of being +1 is > 0.5 then we assign that point the label of +1. This is
the default behavior of Skytree Server as well when it is not doing automatic tuning. However, a probability threshold
of 0.5 or 50% is not necessarily the best value for highest classification accuracy, or for that matter any scoring
metric that utilizes the labels output. Therefore, when Skytree Server is in tuning mode it automatically reports the
best probability threshold for any given metric.

Two cases arise depending on the --testing_objective.

1. --testing_objective is accuracy or fscore i.e. label based metric is being used to pick the best model. In
this case the probability threshold is automatically tuned and applied in tuning as well as testing and stored with
the model. It is also reported in the log. Therefore, if --testing_objective is accuracy then all the scores and
models will use the best possible probability threshold for accuracy. Similarly for fscore.

2. --testing_objective is gini or capture_dev or precision_at_k, i.e. probability based metric is being
used to pick the best model.

a. In this case, if the --testing_objective is gini or capture_dev, then the --classification_
objective argument comes into play. If --classification_objective is accuracy, then the model will
still be picked based on best gini or capture_dev but the probability threshold will be tuned for accuracy
and the labels outputted for the test data will be based on this probability threshold. Similarly, for fscore.

b. In this case, if the --testing_objective is precision_at_k (where k∈ (0,1) is specified via --k_for_

precision and defaults to 0.1), the --classification_objective is not used at all. The probability
threshold is chosen to correspond to the top 100k-th percentile probability. This implies that any test point
with the probability of being +1 higher than this threshold is probably in the top 100k-th percentile.

Tuning for Best Accuracy

A testing dataset can be specified via the --testing_in option when Skytree Server runs in tuning mode. Skytree
Server will first tune for the best parameters and use the model giving the best Gini by default for prediction using the
test set. If you want to pick the model with the best accuracy rather than the best Gini the --testing_objective
argument can be used. This is illustrated in the following example:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--lambda 0.1:0.1:0.5 \

--num_folds 10 \

--testing_in sdss.test.st \

--probabilities_out probabilities.sdss \

--labels_out sdss.test.labels.lsvm \

--testing_objective accuracy

Smart Search

In the case where users might not know the best configuration options to specify in order to train and tune a model,
or in the case where users want to repeat an experiment, SVM allows for hyper-parameter optimization (smart
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search).

With a series of --smart_search options, users only need to specify the training set and the kernel type (if a kernel
function other than the default --kernel=linear is desired). Based on the kernel type, SVM will automatically
search for the best parameter settings without any additional required input from the user. When scoring, smart
search will tune over the --testing_objective while reporting additional scores.

The example below specifies to try 1000 different parameter settings. In this example, because a kernel type is not
specified, smart search will run using --kernel=linear. Note that if a different kernel function is desired, then it
must be explicitly specified.

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--smart_search \

--smart_search_iterations 1000

By default, smart search restricts the parameter space (for example, in --rbf_bandwidth, --lambda, --
polynomial_offset, etc.) in order to reduce the training time. If you do not want to restrict the upper bound for
these parameters, specify --limit_parameters=off.

In some cases, users may want to input values for certain parameters and let SVM smart search tune over the rest.
Users can provide open or closed intervals for any tuning parameter using <min>:<max> or <min>: or :<max>. Specific
values at regular intervals can also be specified with <min>:<step>:<max>. For example:

• --rbf_bandwidth=1.0:2.0 can be used to specify an interval.

• --rbf_bandwidth=1.0: specifies a lower bound.

• --rbf_bandwidth=1.0:0.2:2.0 & --rbf_bandwidth=1.1 can be used to specify exact values to use during
smart search.

Tunable intervals or exact values that are explicitly set will be passed to skytree-server. All other parameters will
be sampled during smart search.

Note: --smart_search cannot be used with --model_in. Similarly, --probability_threshold cannot be
specified with --smart_search because this option cannot be used during tuning.

Note: Similar to restart in GBT and GBTR, users can restart a smart search run. Refer to Restarting Smart Search
(page 87) in the GBT section for more information.

PMML Model Export

Trained SVM models can be exported into PMML (Predictive Model Markup Language) format using the --pmml_
out option. This allows the use of an external code for scoring.

For more information on PMML format, please refer to the PMML 4.2 section on the Data Mining Group Web site
(http://www.dmg.org/v4-2/GeneralStructure.html).

All options available for SVM are available for PMML output.
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The labels column is included in the PMML output. Unlike in the ensemble methods, the labels column by default is
defined in terms of margin >= 0.0 and not in terms of probability_1 >= 0.5. If, however, the user provides
--probability_threshold, or if SVM is being tuned, then the labels column is defined in terms of probability_
1 >= probability_threshold.

Note: PMML output option is not supported for distributed non-linear SVM.

Notes on SVM Training

1. Datasets with randomly shuffled rows can increase svm performance (in terms of both accuracy and efficiency),
especially in the distributed setting.

2. For better accuracy, stability, and convergence in the SVM training process, especially with the linear and
polynomial kernels, all the features in the training set should be scaled to the same range. (For example, all the
features can be scaled to be in the [-1, 1] range.) This means that the range of the feature values for each
feature should be similar. There are two important things to note about scaling:

a. The scaling coefficients used to scale the training set must also be used to scale the test/tuning/validation
set.

b. Scaling is different from normalization. Scaling just involves dividing each feature value with the maximum
absolute feature value.

Metric Learning Methods

Some machine learning methods are independent to how the data is scaled, stretched, shifted, slanted, or rotated.
While these affine invariant methods can be extremely useful, they are not always the fastest or most accurate means
of estimation. The goal of metric learning is to enable more powerful yet scale-sensitive methods to operate on badly
scaled data.

For instance, nearest neighbors search is invariant to overall scale, origin shift, and rotation—these either affect
distances uniformly or don’t affect them at all—but it is not invariant to the scales of individual dimensions. A single
dimension with values in the millions will wash out the effect of all other dimensions if their values range from 0 to 1.
Metric learning thus aims to learn scale weights for each dimension to optimize the prediction task, which is in this
case often classification.

Though the goal is always the same, there are a number of different strategies for optimizing metric weights,
including the following:

• Fit (page 117)

• Random (page 118)

• Forward Selection (page 118)

• Backward Selection (page 119)

• Forward/Backward Selection with Fit (page 120)

• Explore (page 120)

• Combination of Metric Learning with Tuning (page 122)
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Combining Advanced Nearest Neighbor methods together with the Metric Learning and other Prediction methods
can result in models that achieve the highest theoretically attainable classification accuracy.

The weighted nearest neighbors classifier wnnc from the Skytree Server Advanced Nearest Neighbor methods is
applied on the SDSS dataset:

First, a baseline is established without metric learning:

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--imbalance \

--k_neighbors 50 \

--testing_in sdss.test.st \

--probabilities_out probs

# skytree-server score \

--true_labels_in sdss.test.labels \

--probabilities_in probs.class1

Gini index: 0.99052

In this example, some typical parameters are used, without tuning. Refer to the documentation for the Advanced
Nearest Neighbor methods for additional details about the wnnc module.

In the following, we will show how to get even higher Gini indices through metric learning. These concepts are
generally applicable to any datasets.

Fit

Metric weights can be found by fitting a linear model on the training data. This is specified with --fit_metric_

weights:

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--imbalance \

--k_neighbors 50 \

--fit_metric_weights \

--fit_metric_weights_out fit.csv

This will compute a decent set of weights and write them to a file called fit.csv. You can also try --fit_method=
[1|2]. Note that the fitted weights are not necessarily optimal for Gini, F-Score, etc. You can also try specifying a
threshold with --fit_threshold 5 (or other values). The fit threshold prunes dimensions that seem unhelpful by
weighting them to 0. Lower values are more aggressive, but --fit_threshold=0 turns pruning off. The default
threshold is 8 for --fit_metric_weights but is turned off (0) for the backward_fit and forward_fit methods.

The --fit_metric_weights option can also be combined with --metric_learning (explained in the next
section), in which case metric learning would try to improve on the initial weights obtained by fitting.

Alternately, you can use --metric_weights_in to let optimization continue from a user-specified weight vector, or
where metric learning left off, even if switching to another metric learning method. Note that --fit_metric_
weights trumps ---metric_weights_in.
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Random

The simplest metric learning method is to use a different random weight (i.e., sampled uniformly from the interval
[0, 1] for each dimension (feature), and use a different random weight vector at every iteration. The random generator
can be seeded with --metric_learning_random_seed for reproducibility.

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--imbalance \

--k_neighbors 50 \

--metric_learning \

--metric_learning_method random \

--metric_learning_random_seed 123 \

--metric_learning_iterations 10 \

--metric_learning_objective gini \

--optimal_metric_weights_out random.csv

This will perform leave-one-out cross-validation for metric learning with 10 iterations of random metric weight vectors
and finally write the best weights found so far (in the above example for F-score) to a file called random.csv:

cat random.csv

1.1645573427262690e-02

2.6797112819664903e-02

8.5948552910153353e-04

3.4347075288359008e-02

Forward Selection

In addition to random, there are two other metric learning methods for forward and backward selection.

Forward selection is the concept of finding the best weight vector consisting of only one non-trivial dimension, and
then successively adding the single best next dimension. The final weight vector is the optimal subset of all available
dimensions given the rule of sticking with the best dimensions for each previous iteration (dimensionality).

Given a simple synthetic example of forward-selection for 4D data that goes through 10 trials:

4 trials in 1D: 1 0 0 0, 0 1 0 0, 0 0 1 0, 0 0 0 1, keep the best, for example, 0 0 1 0

3 trials in 2D: 1 0 1 0, 0 1 1 0, 0 0 1 1, keep the best, for example, 0 0 1 1

2 trials in 3D: 1 0 1 1, 0 1 1 1, might be no improvement on 0 0 1 1

1 trial in 4D : 1 1 1 1, might still be worse than 0 0 1 1

In this example, the optimal_metric_weights_out file would represent the weight vector 0 0 1 1.

Now applied to the SDSS dataset:

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--imbalance \
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--k_neighbors 50 \

--metric_learning \

--metric_learning_method forward \

--optimal_metric_weights_out forward.csv

In this case, we see that all 4 dimensions of the dataset seem important enough to keep, as forward.csv contains
all weights of 1.0. Note that there are 24 = 16 different possible weight vectors by selecting individual dimensions, but
only 10 were seen during the path chosen during forward selection, so it is possible that the global optimum is
missed, especially in higher dimensionalities.

If --metric_weights_in was given, then instead of weights of 0 or 1.0, the optimal weights subset will be taken
from the specified weights. This can be very useful, but it also opens up an infinite optimization space and can
require a lot of computational resources even if accompanied by a good optimization strategy.

Backward Selection

Backward selection is similar to forward selection, but it starts with the full weight vector (all weights of 1.0 if no
--metric_weights_in is given), and then tries to reduce the dimensionality one by one.

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--imbalance \

--k_neighbors 50 \

--metric_learning \

--metric_learning_method backward \

--optimal_metric_weights_out backward.csv

In this case, the backward.csv metric vector represents 1 1 1 0, indicating that for this particular dataset and for
--metric_learning_objective=gini (the default value), it is better to ignore the 4th dimension. This also shows
that forward selection must have skipped this particular weight vector. Backward selection can sometimes be better if
most dimensions are expected to be important, especially when starting with a good initial weight vector.

Most likely, the global optimum for the weight vector does not just contain values of 0 or 1.0, so it makes sense to use
--metric_weights_in, or perform more advanced metric learning steps as explained in the sections that follow.

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--imbalance \

--k_neighbors 50 \

--metric_weights_in random.csv \

--metric_learning \

--metric_learning_method backward \

--optimal_metric_weights_out random_backward.csv

Also note that for backward and backward_fit (see the next section), it is possible to terminate the iterations
before the weight vector goes all the way down to 1D. This can be done using the --metric_learning_min_dim_
ratio option. A value of 0.5, for example, would specify that the lowest dimensionality to be tried is half the number
of full dimensions.
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Forward/Backward Selection with Fit

Forward or backward selection can sometimes help when fitting a new D-dimensional weight vector for every iteration
during forward or backward selection. For fitting, only dimensions specified by the selection path taken so far will end
up with non-zero weights.

This can be obtained by specifying --metric_learning_method=[forward_fit|backward_fit]:

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--imbalance \

--k_neighbors 50 \

--metric_learning \

--metric_learning_method forward_fit \

--optimal_metric_weights_out forward_fit.csv

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--imbalance \

--k_neighbors 50 \

--metric_learning \

--metric_learning_method backward_fit \

--optimal_metric_weights_out backward_fit.csv

Note: Weights given by --metric_weights_in have no effect on forward_fit or backward_fit, as they
would be overwritten during the first iteration.

Explore

Probably the most powerful metric learning method in Skytree Server is the explore method. It can lead to extremely
accurate results if given enough iterations. Starting with the best initial weights we obtained earlier, the explore
method tries to slightly modify each dimension’s weight based on advanced Monte Carlo methods, accepting and
rejecting updates based on multiple criteria.

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--imbalance \

--k_neighbors 50 \

--metric_weights_in backward.csv \

--metric_learning \

--metric_learning_method explore \

--metric_learning_iterations 50 \

--metric_learning_random_seed 999 \

--optimal_metric_weights_out backward_explore_50.csv

After 50 explore iterations, the weights have changed from 1 1 1 0 to
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# cat backward_explore_50.csv

8.3307723740124218e-01

1.4389604326347196e+00

1.5398424440030496e+00

3.6836467139240275e-01

and the Gini index has increased significantly from the baseline of 0.99052:

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--imbalance \

--k_neighbors 50 \

--metric_weights_in backward_explore_50.csv \

--probabilities_out probs

# skytree-server score \

--true_labels_in sdss.test.labels \

--probabilities_in probs.class1

Gini index: 0.992115

This process can be repeated for many iterations, or by re-starting from previously obtained metric weights:

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--imbalance \

--k_neighbors 50 \

--metric_weights_in backward_explore_50.csv \

--metric_learning \

--metric_learning_method explore \

--metric_learning_iterations 50 \

--metric_learning_random_seed 999 \

--optimal_metric_weights_out backward_explore_50.again.csv

Again, the Gini index has increased: 0.992293.

Further options to the explore metric learning method are --explore_persistence and --explore_scales_in.
The first regulates the “risk appetite” of the method, while the latter can point to a file indicating the amount of
variation to be taken for each dimension. For example, if the weight for the first dimension should be kept constant,
but the weight for the 4th dimension is allowed to change a lot, then the following could be done:

# echo "0 0.1 0.1 0.5" > explore_scales

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--imbalance \

--k_neighbors 50 \

--metric_weights_in backward_explore_50.csv \

--metric_learning \
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--metric_learning_method explore \

--metric_learning_iterations 50 \

--metric_learning_random_seed 192 \

--explore_scales_in explore_scales \

--optimal_metric_weights_out backward_explore_50.scale.csv

Now, the weights will only have changed for the last 3 dimensions.

# cat backward_explore_50.scale.csv

8.3307723740124218e-01

1.4243593341817145e+00

1.5702470122195578e+00

4.4279322735316989e-01

Note that the (biased) Gini index has improved again during the last metric learning tuning run, but the (unbiased)
testing Gini index has actually decreased:

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--imbalance \

--k_neighbors 50 \

--metric_weights_in backward_explore_50.scale.csv \

--probabilities_out probs

# skytree-server score \

--true_labels_in sdss.test.labels \

--probabilities_in probs.class1

Gini index: 0.992166

To reiterate, keep in mind that any Ginis, etc., found on the training references and/or tuning data are biased as they
have been optimized. To obtain unbiased estimates of Gini, it is necessary to rerun metric-weighted classification on a
validation (test) set (one that played no role in optimization) via --metric_weights_in, as shown here.

Combination of Metric Learning with Tuning

Each of the metric learning methods introduced so far can lead to good results. It makes sense to try them all, but
keep in mind that forward, forward_fit, backward, and backward_fit all have quadratic iteration counts with
the number of dimensions. But especially one initial (deterministic) backward run (potentially only going down to a
relatively large fraction of dimensions) in combination with many successive explore iterations can be the shortest
path to obtaining a model with high predictive strength.

All metric learning methods can automatically be combined with tuning over the number of neighbors and distance
kernel bandwidths (potentially for both classes in binary classification).

It might be helpful to note that all above metric learning methods can be terminated with Ctrl+C, and optimal metric
weights (so far) will still be written to file.

Alternatively, if iterations are taking too long, you can enable rank approximation. For example, try this:
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# --rank_error_tol 0.3 \

--rank_error_prob 0.9

Or you can try --sample_imbalance if --imbalance is also used.

You can also optimize for things other than Gini, by specifying --metric_learning_objective fscore. Other
available objectives include accuracy and capturedev.

Don’t forget to try different distance weight functions, such as 1/r, 1/r^2, fixed_gaussian, gaussian, fixed_
epan and epan. For gaussian and epan kernels, bandwidths are important (and can be tuned over).

One such combined example would be as follows:

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--dist_weight gaussian \

--imbalance \

--k_neighbors 2:2:20 \

--k_neighbors 2:2:20 \

--bandwidth 0.1:0.2:1.0 \

--bandwidth 0.1:0.2:1.0 \

--metric_weights_in backward_explore_50.csv \

--metric_learning \

--metric_learning_method explore \

--metric_learning_iterations 50 \

--metric_learning_random_seed 192 \

--explore_scales_in explore_scales \

--optimal_metric_weights_out backward_explore_50.tune.csv

Class -1 k-value(s): 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,

Class -1 bandwidth(s): 0.1, 0.3, 0.5, 0.7, 0.9,

Class 1 k-value(s): 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,

Class 1 bandwidth(s): 0.1, 0.3, 0.5, 0.7, 0.9,

Now each of the 50 metric learning iterations will tune over 2500 parameter configurations.

The optimal metric weights and the optimal model parameters (as reported at the end for best Gini, in this example)
should lead to an improved model.

# skytree-server wnnc \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--dist_weight gaussian \

--imbalance \

--k_neighbors 20 \

--k_neighbors 2 \

--bandwidth 0.1 \

--bandwidth 0.5 \

--probability_threshold 0.9810441889047585 \

--metric_weights_in backward_explore_50.tune.csv \

--testing_in sdss.test.st \

--probabilities_out probs
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# skytree-server score \

--true_labels_in sdss.test.labels \

--probabilities_in probs.class1

Gini index: 0.994496

The Gini index has increased significantly over the baseline results. While this was just a small dataset, all of the
above concepts should translate well to larger datasets, leading to models with unprecedented accuracy.

Logistic Regression

The Skytree Server Logistic Regression module implements an L1 regularized, memory-efficient, and fast algorithm for
binary classification. Many descriptive statistics on the resulting model are also output.

Information on how to obtain the sample datasets used in the examples can be found in datasets. You can run the
following command to see the options available for logistic regression:

# skytree-server logistic --help

You can also refer to Logistic Regression Options (page 286) in the Command Reference Appendix for information on
the available options.

A Simple Example

Run the Logistic Regression module with the following arguments:

# skytree-server logistic \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--coefficients_out coeffs

The above call will compute the logistic regression model, on the data provided in “sdss.train.st”. The coefficients
for the model, which will contain the intercept coefficient as well, will be output to the file called “coeffs”.

Excluding the Bias Term

By default, a bias or intercept term is included in the computed model. The bias term adjusts the log-odds up or down
by a constant amount, i.e. it is the predicted log-odds when all inputs are exactly 0. It can be excluded (forced equal
0) with --exclude_bias_term:

# skytree-server logistic \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--coefficients_out coeffs \

--exclude_bias_term

Excluding the bias term will negatively impact measured model quality, but is appropriate when a given logistic
regression model should definitely predict 0.5 when all inputs are 0.
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Regularization Term

Skytree Server Logistic Regression is L1-regularized. The default value for the regularization term is set to 1e - 6. This
value is sufficient to completely fit the model to the data. Higher values can be used to ensure under-fit models that
may suit the problem better.

# skytree-server logistic \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--coefficients_out coeffs \

--regularization 0.001

Altering the regularization term will penalize the L1-norm of the coefficients in the logistic regression.

Training and Testing

To predict probabilities for a testing dataset the following simple example can be used.

# skytree-server logistic \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--coefficients_out coeffs \

--testing_in sdss.test.st \

--probabilities_out sdss.test.probabilities \

--labels_out sdss.test.labels.out

Testing Only

Once the coefficients have been saved, they can be reloaded to predict the labels and probabilities of test datasets as
follows.

# skytree-server logistic \

--coefficients_in coeffs \

--testing_in sdss.test.st \

--probabilities_out sdss.test.probabilities \

--labels_out sdss.test.labels

Linear Regression

Linear regression is an approach to modeling the relationship between a scalar variable y and one or more
explanatory variables denoted X. For example, we might want to predict the stock market index from the temperature,
the air pollution level and highway traffic. We could train a linear regression model from historical data. Obviously the
accuracy of the predictor wouldn’t be high. Just finding a linear model that has high accuracy is not always what we
want. Interpretability of the model over the factors (in this case temperature, air pollution etc) is very important too.
For example, we would like to eliminate factors that are not contributing to the prediction. Stepwise regression
(http://en.wikipedia.org/wiki/Stepwise_regression) is one way of eliminating factors.
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Overview

Linear regression models the relationship between a group of regressors (predictors) X1, ⋯ Xp and the prediction
values y, using a linear fit. Given the following data set
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X is called the design matrix, and one could include the bias term by appending a constant 1 vector to X, that is to add
xi0 = 1 for i = 1, ⋯ N. In this case, the model has an additional coefficient such that
β = (β

0
, β

1
, ⋯ , β

p
)T. The following assumptions are made:

1. The design matrix X is of full column rank. Otherwise, β is not uniquely defined, leading to numerical instability.

2. ϵ i is an independent Gaussian noise.

3. The predictors xi are error-free.

If the design matrix is of full rank, one way of computing the linear model β is to use the ordinary least squares:

β X X X y^ = ( )T T−1

Feature Selection

If the full column rank assumption is not satisfied, we resort to feature selection, which removes redundant predictor
features. The following algorithms are typically used.

• Backward elimination with variance inflation factor (VIF) selection, optionally preceded by the correlation-based
feature selection and optionally followed by the bidirectional stepwise regression.

• Least absolute shrinkage and selection operator (LASSO).

Supported Features

The following features are currently supported:

• Correlation-based feature pruning.

• Backward elimination with VIF criterion.
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• Bidirectional stepwise regression based on the AIC criterion.

Correlation-Based Pruning

The interdependence between one feature and another can be measured by the Pearson product-moment correlation
coefficient, which can be thought of as a normalized measure of covariance. It is defined for the feature X

1
and X

2
:
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Given a data set
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By the Cauchy-Schwarz inequality, it can be shown that r| | ≤ 1X X1 2 . A sample correlation coefficient close to 1
implies an increasing linear relationship, while being close to -1 implies a decreasing linear relationship. A sample
correlation coefficient close to 0 implies a lack of correlation (but does not imply independence unless X

1
and X

2
are

jointly Gaussian).

This pruning method is computationally cheaper than the backward elimination with VIF criteria or the bidirectional
stepwise regression; the variances of each feature and the covariances of each pair of features can be precomputed
and do not involve matrix-inversion.

Backward Elimination with VIF Selection

Backward elimination with variance inflation factor (VIF) selection is preceded optionally by the correlation-pruning
described in the previous section. VIF is a method of quantifying the degree of collinearity. For example, suppose we
have the following regression equation with k independent variables:

⋯Y β β X β X= + + + +ϵ
k k0 1 1

Then the variance inflation factor for β^
i

is given by regressing the rest of the variables Xj for j ≠ i against Xi.
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and computing the following:
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Where Ri is the coefficient of determination.

The feature elimination algorithm consists of two nested loops; the inner loop takes the current set of features that
have to be considered for pruning and regresses one of the features at a time against the rest and computes its VIF. If
the maximum VIF, after the termination of the inner loop, is more than the pre-specified threshold, then the feature
with the corresponding VIF is eliminated. The outer loop continues either until there are only two features in the prune
set or the inner loop fails to find a feature with a large VIF. The following is the pseudocode for the algorithm:

Stepwise Regression

Stepwise regression is a greedy feature selection algorithm. It starts with a set of features and considers an action of
adding a feature from the set of inactive features and removing a feature from the currently active set of features. The
decision of whether to add or remove is based on the maximization of the fitness of the linear model, for which AIC,
BIC, and the F-test criterion are widely used. Skytree Server uses foward/backward hybrid stepwise selection with AIC.

Usage Examples

Run the following command to see the options available for linear regression.

# skytree-server linear --help

You can also refer to Linear Regression Options (page 282) in the Command Reference Appendix for information on
the available options.

A Simple Example

Run the Linear Regression module with the following arguments:

# skytree-server linear \

--references_in sample_promo.st \

--prediction_index 0

The above call will compute the linear regression model, on the data provided in “sample_promo.st”, by using the
backward-elimination with VIF criteria algorithm. Notice that the prediction value, also called y, is in this case the first
non-metadata column and is indexed by 0, as suggested above. If --prediction_index is left out, the first attribute
(index 0) is used by default. The rest of the attributes are used to predict y.

Excluding the Bias Term

By default, a bias term is included in the computed model. The bias term adjusts all predictions up or down by a
constant amount, i.e. it is the predicted value when all inputs are exactly 0. It can be excluded (forced equal 0) with
--exclude_bias_term:
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# skytree-server linear \

--references_in sample_promo.st \

--exclude_bias_term

Excluding the bias term can negatively impact measured model quality, but it is appropriate when a given regression
model should definitely predict 0 when all inputs are 0.

VIF Selection Threshold

The threshold for the VIF selection can be set through the --vif_threshold parameter:

# skytree-server linear \

--references_in sample_promo.st \

--prediction_index 0 \

--vif_threshold 5.0

Altering the VIF threshold affects how readily linear regression will eliminate redundant features. A lower VIF
threshold will result in fewer features contributing to the final model.

Outputting the Model

To output model coefficients, use:

# skytree-server linear \

--references_in sample_promo.st \

--prediction_index 0 \

--coeffs_out coefficients.st

If the bias term is used in the model, its value will be written to the coefficient with index equal to that of the predicted
variable; otherwise, the value at that index is 0. In this example, the bias term is written to the first coefficient.

Outputting Statistics

Linear regression can also output a host of statistics describing the quality of the model. These are available by
enabling the --output_statistics flag, and are each written to their own files as follows:

# skytree-server linear \

--references_in sample_promo.st \

--coeffs_out coefficients.st \

--std_errors_out standard_errors.st \

--conf_los_out confidence_band_lows.st \

--conf_his_out confidence_band_highs.st \

--t_values_out t_values.st \

--p_values_out p_values.st \

--adj_r_squared_out adjusted_r_squared.st \

--f_statistic_out f_statistic \

--r_squared_out r_squared.st \

--sigma_out sigma.st \

--output_statistics true
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A More Advanced Example

The following example will run linear regression again with the first feature as the prediction index. Correlation
pruning is enabled, which precedes VIF selection and will remove redundant features with correlation coefficients
greater than 0.7. Afterward, the algorithm will use bidirectional stepwise optimization to find an optimal, VIF-selected
model, where each step requires a minimum improvement of 0.5.

# skytree-server linear \

--references_in sample_promo.st \

--prediction_index 0 \

--correlation_pruning \

--correlation_threshold 0.7 \

--stepwise \

--stepwise_threshold 0.5

Generalized Linear Models

The Generalized Linear Model (GLM) is an extension of the linear model, which for data x = (1, x
1

,...,xn) and response
variable y finds linear weights β = (β

0
, β

1
, ..., βn) such that

⋯µy β β x β x β= x = + + +
T
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is a suitable estimate of y. Optimal model weights are usually chosen such that the estimated responses minimize the
sum of squared errors for a training dataset of size m,

∑ y βx( − )

i m
i i

T

1≤ ≤

2

This form of estimation is equivalent to maximum likelihood estimation, if one assumes that responses y are sampled
from a normal distribution with mean μ = xTβ and fixed variance.

The above configuration is limited in several ways. Notably, modeling y as a linear combination of the features of x
means that any constant change in any of the predictors is met with a corresponding constant (though scaled)
change in the prediction ŷ. Consequently, it is not possible to enforce that ŷ always remain in some sensible range,
e.g., greater than zero, regardless of the predictors. In addition, the assumption that y is normally distributed with
fixed variance may be incorrect for the given data. As a result, optimization may be disproportionately influenced by
higher-variance regions of the data, sacrificing the performance elsewhere, and may yield predictions that do not
align with the underlying distribution's expected value.

In contrast to the above, GLM can fit β for responses y sampled from any of various distributions in the exponential
family. Depending on the distribution chosen, this allows for y to have either fixed variance or variance that scales as
a function of xTβ. In addition, GLM can fit linear models to non-linear transformations of the response

g µ η βx( ) = = T

for μ the expected value of y and a link functiong such as the logarithm, square root, or multiplicative inverse. The
predicted values are then obtained

µy g η g βx= ( ) = ( )T−1 −1
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GLM Components

There are three key components to any GLM problem:

• A probability distribution family f in the exponential family with expected value μ = Ef(y)

• A linear model η = xTβ

• A link function g relating g(μ) = η

Accordingly, in order to specify a GLM problem, you must choose family function f, link function g, and any
parameters needed to train the linear model weights β.

Note: A family function cannot be specified in glmc because only a single family (Binomial) is available.

Distribution Families

The different choices for the family in GLM is usually governed by how the distribution family models variance with
respect to the mean. This is important because there are situations where responses with larger magnitude are
allowed to have larger variance in the modeling process. (For example, when insurance claims are of the order of
thousands, a variance/error of the order of hundreds is acceptable, but claims of the order of hundreds can only
tolerate a variance in the order of tens.)

Skytree Server supports the following probability distribution families in GLM:

Regression:

▪ Gaussian: The usual least-squares linear regression distribution. Variance is constant with respect to μ.

▪ Poisson: Generally used for positive integral targets. Skytree Server can handle non-integer targets if provided.
Variance scales proportionally to μ.

▪ Gamma: For positive targets. Variance scales proportionally to μ2.

▪ Tweedie: Also known as the compound Poisson-gamma distributions. Provides a continuous spectrum from
Poisson distribution to the gamma distribution. Variance scales proportionally to μp, where 1 < p < 2 is the
Tweedie exponent.

Classification:

▪ Binomial: Useful when the targets take one of only two values/levels. (Usually a lower value denotes failure of
some event of interest while the higher value denotes success.) Hence, it is used in binary classification where
the targets are labels. The variance scales proportionally to μ(1-μ).

Link Functions

Skytree Server currently supports the following Link Functions:

Regression:

▪ Canonical: This can be used with any glmr Family option. This is equivalent to one of the following for each
of the paired family functions.

▪ Identity: This can be used with a Gaussian or Poisson family.
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E y η( ) =f

▪ Square-Root: This can be used with the Poisson family.

E y η( ) =f
2

▪ Inverse: This can be used with the Gamma Family.

E y( ) =f η

1

▪ Log: This can be used with a Gamma, Poisson, or Tweedie Family.

E y e( ) =f
η

Note: Certain link functions, such as Log and Square-Root, are only applicable to non-negative responses.

Classification:

▪ Logit: The Logistic link function can be used with the Binomial family in glmc.

E y η( ) = 1 / (1 + exp(− ))f

▪ Cloglog: The Complementary Log-Log function can be used with the Binomial family in glmc.

E y η( ) = 1 − exp( − exp( ))f

The following table shows the accepted combinations of Family/Link Function.

Family
Link Function

Identity Square Root Inverse Log Logit Cloglog

Gaussian X

Poisson X X X

Gamma X X

Tweedie X

Binomial X X

Table 2: Family/Link Function Combinations

Note: Canonical link functions for supported families:
• Gaussian, identity
• Poisson, log
• Gamma, inverse
• Tweedie, log
• Binomial, logit
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Regularization

Both least-squares linear regression and GLM are subject to overfitting the model weights β, in which component
coefficients βj become large but contradictory so as to exploit minor fluctuations in the training data in order to more
exactly reproduce the response. While training error may diminish to near zero in this case, testing error tends to
worsen and may become extreme. This always occurs if the number of features is sufficiently large with regard to the
number of samples; accordingly, it is important to employ a form of regularization.

Regularization constitutes a shift towards bias (simpler models) and away from variance (overfitting). It can be
thought of as a form of Occam's razor; specifically, it asserts that models featuring large coefficients that yet
delicately cancel so as to obtain the observed responses are extremely unlikely and should be disregarded. It
accomplishes this by adding a penalty term directly to the optimized value. In the case of least-squares linear
regression, this may be written

∑ ∑ ∑y β λ β
λ

βx( − ) + +
2

i n
i i

T

j d
j

j d
j

1≤ ≤

2
1

1≤ ≤

2
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where the non-negative λ
1

and λ
2

terms correspond to the L1 and L2 penalties. If λ
2

is non-zero and λ
1

is zero, the
above is known as ridge regression. If λ

1
is non-zero and λ

2
is zero, then the above is known as the LASSO. If both λ

1
and λ

2
are non-zero, the above is known as the elastic net method.

L1 and L2 penalties produce models with slightly different characters from one another. In particular, larger L1
penalties will tend to produce sparse models, with many coefficients βj exactly equal to zero. This can be thought of
as optimization completely eliminating irrelevant features, or selecting only one feature from each group of correlated
features. On the other hand, L2 regularization tends to assign non-zero weights to all of the features. This can
produce models with less overall bias and thus potentially higher accuracy, but also more complexity. Mixing the two
penalties results in a compromise between these two effects: moderately sparse models that are nonetheless still
sensitive to the slight differences of even correlated features.

Like any parameter, the L1 and L2 penalty factors must be adequately tuned to train good models. Their optimal
values may vary as a function of dataset size, the scale of the features, and the distribution of the data.

PMML Model Export

Trained GLM models can be exported into PMML (Predictive Model Markup Language) format using the --pmml_
out option. This allows the use of an external code for scoring.

For more information on PMML format, please refer to the PMML 4.2 section on the Data Mining Group Web site
(http://www.dmg.org/v4-2/GeneralStructure.html).

All options available in glmc and glmr are available for PMML output.

For glmc, the labels column is included in the PMML output. Similar to ensemble methods, the labels column by
default is defined in terms probability_1 >= 0.5.

Usage Examples

Run the following command to see the options available for GLM (classification and regression).

# skytree-server glmr --help

# skytree-server glmc --help
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or refer to Generalized Linear Model Classification Options (page 229) and Generalized Linear Model Regression Options
(page 236) in the Command Reference appendix.

Training and Testing a Model

The following example trains a GLM Regression model using the gaussian-identity Family/Link Function pair.

# skytree-server glmr \

--training_in train.st \

--training_targets_in train.targets \

--model_out glmr.model \

--testing_in test.st \

--targets_out test.pred.targets \

--family gaussian \

--link identity \

--l1_penalty 0.01 \

--l2_penalty 0 \

--epsilon 0.001 \

--max_iterations 1000

The model is then loaded and tested.

# skytree-server glmr \

--model_in glmr.model \

--testing_in test.st \

--targets_out test.pred.targets

Excluding the Bias Term

By default, a bias term is included in the computed model. The bias term adjusts all predictions up or down by a
constant amount, i.e. it is the predicted value when all inputs are exactly 0. It can be excluded (forced equal 0) with
--exclude_bias_term:

# skytree-server glmc \

--training_in train.st \

--training_labels_in train.labels \

--model_out glmc.model \

--testing_in test.st \

--labels_out test.pred.labels \

--link cloglog \

--l1_penalty 0.01 \

--l2_penalty 0 \

--epsilon 0.001 \

--max_iterations 1000 \

--exclude_bias_term

In GLM, the inverse of the link function is applied to obtain the final predictions (targets in glmr and probabilities in
glmc). Excluding the bias term can negatively impact measured model quality, but it is appropriate when a given
linear model should definitely predict 0 when all inputs are 0 (before the application of the inverse of the link function
to obtain the final predictions). You may also want to exclude the bias/intercept term to choose a simpler model
when appropriate and move away from overfitting.
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Note: This option cannot be used with the following family/link combinations: poisson/identity, poisson/sqrt, and
gamma/inverse.

Tuning an Unbiased Poisson-Log Model

The following example tunes an unbiased GLMR model using the poisson-log Family/Link Function pair.

# skytree-server glmr \

--training_in train.st \

--training_targets_in train.targets \

--num_folds 5 \

--family poisson \

--link log \

--exclude_bias_term on \

--l1_penalty 0,0.001,0.01,0.1 \

--l2_penalty 0,0.001,0.01,0.1 \

--tuning_results_out glmr.tuning.json \

--tuning_results_format json

Tuning for Yield Scoring

Just as with gbt and rdf, the glmc method allows you to include a --yield_values_in option, which specifies the
file for calculating yield values during tuning. This file must be the same length as either the training or tuning vector,
depending on whether a tuning table or holdouts are used.

Note: The --yield_values_in option is not available in glmr.

# skytree-server glmc \

--training_in yield.data.st \

--training_labels_in yield.data.labels \

--num_folds 2 \

--model_out model \

--yield_values_in yield.data.values \

--testing_objective yield \

--link logit \

--l1_penalty 0,0.01,0.1,1 \

--l1_penalty 0,0.01,0.1,1 \

--tuning_results_out glmc.yield.tuning.results.json \

--tuning_results_format json \

--log run.log

When specifying the optional --testing_objective=yield, the yield value will be used to determine the best
model. A --yield_values_in file is required if --testing_objective=yield is specified; otherwise it is optional.

The logs show the best tuning results for Gini and Yield as well as the parameters used to reproduce these models.

Using the --yield_values_in option, the results can be scored as follows:

# skytree-server score \
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--yield_values_in yield.data.values \

--predicted_labels_in labels.tuning

Smart Search

In the case where users might not know the best configuration options to specify in order to train and tune a model,
or in the case where users want to repeat an experiment, GLM allows for hyper-parameter optimization (smart
search).

With a series of --smart_search options, users need only specify the training set and model validation options
(tuning dataset, holdout ratio, number of folds, etc.), and GLM will automatically search for the best parameter
settings without any additional required input from the user. When scoring, smart search will tune over the
--testing_objective while reporting additional scores.

The example below specifies to try 1000 different parameter settings in a GLM Regression model.

# skytree-server glmr \

--training_in train.st \

--training_targets_in train.targets \

--holdout_ratio 0.3 \

--num_folds 10 \

--smart_search \

--smart_search_iterations 1000

Note: The above example performs smart search with a default testing objective of mean_absolute_error. The
--testing_objective option guides the sequence of parameters used during smart search and should be
explicitly stated if the desired objective is not the default.

In some cases, users may want to input values for certain parameters and let Smart Search tune over the rest. Users
can provide open or closed intervals for any tuning parameter using <min>:<max> or <min>: or :<max>. Specific values
at regular intervals can also be specified with <min>:<step>:<max>. For example:

• --l1_penalty=0:1 can be used to specify an interval.

• --l1_penalty=0.1: specifies a lower bound.

• --l1_penalty=0.1:0.01:0.001 can be used to specify exact values to use during smart search.

Tunable intervals or exact values that are explicitly set will be passed to skytree-server. All other parameters will
be sampled during smart search.

Random Permutation Variable Importance

In ensemble methods, it can become difficult to ascertain the importance of a given independent variable in the
predictive model especially relative to other independent variables. One method proposed in Random Decision Forest
literature is to use random permutations of variables [breiman2001rf].

After each tree is constructed, the values of a single variable in the out-of-sample data are randomly permuted and
then this data is tested against the corresponding tree. This is done for all the dimensions and the results aggregated
over all trees. Finally, we observe the difference in accuracy from the non-permuted version versus the permuted
version for each dimension separately and associate that as the measure of importance for that variable. The higher
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the difference the more important that variable is. These values are then scaled so that the most important variable
gets an importance of 100 [hastie2009elem]. This is achieved by dividing the raw importance values for all the
dimensions by the maximum value and then multiplying by 100. Only dimensions which are completely unused in the
model will have an importance of 0.

A Simple Example

A basic version of this analysis requires a saved model and an out-of-sample dataset along with its labels (for
classification) or targets (for regression) and is illustrated below:

# skytree-server rdf \

--training_in income.train.st \

--training_labels_in income.train.labels \

--num_trees 10 \

--model_out model

# skytree-server whatif \

--model_in model \

--testing_in income.data.st \

--variable_importances_out variable_importances.out \

--testing_labels_in income.data.labels

In the above example the model is applied on the test data and then the data is scrambled one dimension at a time to
observe the effect on accuracy. The variable importances will be written to variable_importances.out. This
output file includes a single column. The first row is the importances of the first column variable in the .st file, the
second row is the importance of the second column, and so on. If the model were a regression model such as GBTR
or RDFR, then --testing_labels_in would be replaced with --testing_targets_in.

Multiple Runs

Each dimension in the out-of-sample dataset is scrambled only once. To reduce variance in results from different
scrambling permutations the experiment can be automatically run many times and importances averaged over these
runs. For large datasets there will be less variance in the results from different runs, and any number of iterations
greater than 10 is unnecessary.

# skytree-server whatif \

--model_in model \

--testing_in income.data.st \

--variable_importances_out variable_importances.out \

--testing_labels_in income.data.labels \

--num_trials 5

Partial Dependencies

For some prediction methods, users can specify the --partial_dependencies_out option, which creates a file to
store the partial dependencies of the relevant features and/or feature pairs in a JSON format. These pairs can then be
used to generate partial dependence plots.

The --partial_dependencies_out option is available in automodel, gbt, gbtr, glmc, glmr, and svm (linear)
when:
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• Training along with --model_out or --testing_in

• Tuning followed by training with --model_out or --testing_in

The output prints the following for each variable:

• The feature name

• A marker indicating whether the feature is real or categorical

▪ For categorical features, the output maps the internal representation of the category value to the actual
category name

• The N value-partial dependency pairs

The data displays as follows in the JSON output. Note that [type, ...] denotes an array of values of the specified
type:

[

{

"variableNames": ["string", ...],

"variableValuesReal": [[float, ...], ...],

"variableValuesCategorical": [["string", ...], ...],

"variableValuesCategoricalProportion": [[float, ...], ...],

"dependenceValues": [[float, ...], ...]

},

...

]
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Chapter 6 Recommendation

The Skytree Server Recommendation method allows you to make high quality recommendations based on scalable
state-of-the-art machine learning algorithms.

Examples of use cases:

• Recommend items based on users’ rating histories

• Recommend items based on users’ purchase histories

• Compute recommendations for new users

The Recommendation method provides the following recommendation algorithm:

• Item-Based Collaborative Filtering (page 139)

Item-Based Collaborative Filtering

Item-based Collaborative Filtering (CF) is a machine learning algorithm that makes predictions about user
preferences based on the opinions of other users. The method first computes a similarity matrix consisting of
similarity measures between pairs of candidate items. Then, using the computed similarities and the set of items a
target user has viewed, bought, or rated, a prediction is made for each candidate item.

The cf module can be applied to recommendation problems involving explicit user feedback, e.g., ratings, for items
they have seen or used. The module may also be applied to implicit feedback (unary) problems, where ratings are not
available but users’ visit or purchase histories have been recorded.

The intuition behind item-based CF is that a user would be interested in buying items that are similar to items that the
user has previously liked (or bought) and would like to avoid items that are similar to items that the user has not
liked. Item-based CF can be used to either make predictions for a given user-item pair or to recommend items to a
user.

Let sij denote the similarity between two items i and j and let Ru,i denote the rating (or implicit feedback) given by user
u for item i in the ratings (or unary) matrix Rwith each row corresponding to a user and each column corresponding
to an item. Let us assume that all missing entries in the ratings matrix correspond to zero. For any item i, the set of
similar items Ni is used to make rating predictions. Let N i

u

denote the set of items similar to item i that have been
rated by user u.

For the case of explicit feedback (ratings), the predicted rating p_{u,i} for a user-item pair (u,i) is given by the weighted
sum of the ratings of user u for items similar to item i as shown by the following representation.
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Let Iu be the set of items purchased (or rated) by the user u. To make r new recommendations to the user, a candidate
set C of items is generated by combining all the similar items for each item j∈ Iu and discarding any item already in
Iu as shown by the following expression

∈
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j I

j u
u

U

Now, the items in the candidate set are sorted according to their predicted ratings, and the top r items are chosen as
recommendations for the user u.

For the unary case, each item c (elementof) C is instead scored by summing its similarities to all the items in Iu as
∈f s= Σ ^

c j I cju
where s s^ =cj cj

if c is among the similar items to j (c∈ Nj) or zero otherwise. Then the items in the

candidate set C are sorted with respect to fc in a non-increasing order, and the top r items are chosen as
recommendations for the user u.

There are multiple ways of computing the similarity between two items. If
r

i and
r

j denote the columns in the ratings
matrix R, then the cosine-similarity is given by

r r
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2 denotes the Euclidean norm of the vector

r
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Different users tend to have different rating scales, but this is not taken into account in cosine-similarity. The adjusted
cosine-similarity alleviates this problem by offsetting each user’s ratings by the average rating of the user.

Let Ui,j be the set of users that have rated both items i and j, and let R̄ u be the average rating of user u. Then the
adjusted cosine-similarity is given by
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A slight modification to the adjusted cosine-similarity using norms of the item vectors is given by
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Another notation of similarity between two items is the Pearson-r correlation. Let R i and R j be the average rating of
the ith and jth item respectively, and Ui,j again denote the set of users who have rated both items i and j. Then the
Pearson correlation is given by

∈

∈ ∈

s =ij

R R R R

R R R R

Σ ( − ) ( − )

Σ ( − ) Σ ( − )

u U i j u i i u j j

u U i j u i i u U i j u j j

, , ,

, ,
2

, ,
2

A slight modification to the Pearson correlation using norms of the item vectors is given by
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While user-item ratings are quite common scenarios, there are various situations where the feedback is more implicit
(for example, in terms of number of visits or number of times bought). We refer to this as the unary setting. This
setting provides an opportunity to define similarities between items in terms of co-occurrences or conditional
probabilities.

The co-occurrence of a pair of items (visited or bought by the same user) across many users might imply that these
two items are quite similar. Similarly, the conditional probability that the user will buy item j given that the user has
already bought i can potentially define a similarity of item j to i.

Let Uij be the set of all users who have implicitly provided feedback for both items i and j, and let Ui be the set of all
users who have provided implicit (unary) feedback for only item i. Then the co-occurrence based similarity function is
given by

si,j = | Ui,j |

and the conditional-probability based similarity function is given by

⋅
s =ij

U

U U

| |

| | | |

i j

i j
α

,

where |A| denotes the cardinality of any set A, and α∈ [0, 1] is a damping parameter that can be optimized over for
better performance. Note that while the co-occurrence based similarity function is symmetric, the notion of similarity
based on the conditional-probability leads to asymmetric relations.

The Jaccard similarity function is given by
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U U U
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Skytree Server has the aforementioned similarity functions as well as various enhancement to these similarity
functions for better performance. The similarity function can be specified by the user or can be tuned over for best
possible performance. Refer to Similarity Functions (page 147) for further details.

To see all available options for the cf module, run:

# skytree-server cf --help

or refer to Collaborative Filtering Options (page 215) in the Command Reference appendix.

Introductory Examples

The examples that follow focus on recommendations using datasets provided with the documentation.

Ratings-Based Recommendation

We begin by recommending 10 items for each user and writing the recommendations to the file recommendations.
The columns included in the output file are user_id,item_id,rating.
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# skytree-server cf \

--training_in user_item.st \

--training_ratings_in user_item.ratings \

--num_recommendations 10 \

--recommendations_out recommendations \

--format_out csv

In the above command the user_item.st file contains pairs of user and items IDs. A user may have rated multiple
items and would then appear once per rated item. The user_item.ratings file gives the ratings corresponding to
the user-item pairs of user_item.st.

If recommendations are required for only a subset of users, the --users_in option can be used to specify a list of
user IDs. If predicted ratings are desired for specific user-item pairs, the --testing_in option should be used.

Note: Items rated by the user are ignored when computing recommendations and are not included in the
--recommendations_out file, but this can be overridden by the --recurrent option. (See Recommendations for
New Users (page 143).)”

The measure used in the computation of the similarity matrix can be specified via the --similarity_function
option. The matrix can then be written to file by specifying --similarity_out. Note that this command does not
specify --format_out for this run. In this case, the default Mahout output format will be used.

# skytree-server cf \

--training_in user_item.st \

--training_ratings_in user_item.ratings \

--similarity_function cosine \

--num_recommendations 10 \

--recommendations_out recommendations \

--similarity_out similarity_matrix

See the Similarity Functions (page 147) section that follows for further information regarding the available similarity
functions.

Unary Recommendation

If ratings are not available, for example, if only user purchase histories are available, the --unary flag should be
specified:

# skytree-server cf \

--training_in user_item.st \

--unary \

--k_neighbors 20 \

--num_recommendations 10 \

--recommendations_out recommendations

Here, we’ve also specified the --k_neighbors option. In this case, only items within "k nearest neighbors" of the
rated items are considered as recommendation candidates.
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Note: The --mean_impute option cannot be specified when --unary is on. In this case, --mean_impute will
automatically be turned off, and --popularity_impute will be turned on. Conversely, if --popularity_
impute is turned on with non-unary data, that option will be turned off, and --mean_impute will be turned on
instead. (Refer to Mean Imputation (page 148) and Popularity Imputation (page 149) for more information.)

Saving and Loading a Model

Models can be saved, in binary format, and reloaded using the --model_out and --model_in options, respectively:

# skytree-server cf \

--training_in user_item.st \

--training_ratings_in user_item.ratings \

--similarity_function cosine \

--model_out model.cf

# skytree-server cf \

--model_in model.cf \

--num_recommendations 10 \

--recommendations_out recommendations

Recommendations for New Users

You can also compute recommendations for new users (i.e, users who are not included in the training set). This is
done using both --testing_in and --testing_ratings_in, with a data format that is analogous to the one
used for training the model. This recommendation also requires that --recommendations_out is specified. The
example below trains a model (model.test) and then produces recommendations.

# skytree-server cf \

--similarity_function adjusted_cosine_norm \

--training_in training_ratings.st \

--training_ratings_in training_ratings.ratings \

--k_neighbors 0 \

--max_sims_per_item 0 \

--min_ratings_per_user 0 \

--threshold -0.1 \

--compression on \

--mean_impute off \

--similarity_out similarity \

--model_out model.test \

--log train.log

# skytree-server cf \

--model_in model.test \

--testing_in testing_ratings.st \

--testing_ratings_in testing_ratings.ratings \

--recommendations_out recommendations \

--log test.log \

--num_recommendations 10 \

--k_neighbors 0 \

--max_sims_per_item 0 \
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--min_ratings_per_user 0 \

--threshold -0.1

By default, items that were already recommended to and rated by a user are not included in --ratings_out file.
However, it might make sense to recommend those items to a user more than once. The --recurrent option
specifies whether previously rated items in the training set can be recommended again to a given user.

# skytree-server cf \

--similarity_function adjusted_cosine_norm \

--training_in user_item.st \

--training_ratings_in user_item.ratings \

--testing_in user_item.st \

--k_neighbors 0 \

--max_sims_per_item 0 \

--min_ratings_per_user 0 \

--threshold -0.1 \

--compression on \

--mean_impute off \

--similarity_out similarity \

--model_out model.test \

--log run.log \

--ratings_out ratings.test \

--recurrent on

Tuning the Model

Use any of the following methods for tuning the model. Refer to Controlling Accuracy, Speed, and Memory Usage (page
147) for descriptions of the parameters to be tuned.

• Tuning Using a Holdout Set (page 144)

• Tuning Using K-Fold Cross Validation (page 145)

• Tuning and Recommending (page 145)

• Content-Based Filtering (page 145)

Tuning Using a Holdout Set

To tune the model parameters, one can explicitly specify a tuning dataset via the --tuning_in and --tuning_

ratings_in options. Alternately, a portion of the training data can be automatically held out by providing a
--holdout_ratio:

# skytree-server cf \

--training_in user_item.st \

--training_ratings_in user_item.ratings \

--k_neighbors 1:1:20 \

--holdout_ratio 0.2

The command above will hold out 20% of the training data for use in evaluating the model.

Upon completion, the model parameters giving the ten best scoring metrics are reported. For each of the best models
(one per metric) all parameters are reported as part of an option string that can be used to reproduce the models. All
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tuning results can be saved to a file using the --tuning_results_out option. Users can specify whether the format
of this output file is JSON or CSV using the --tuning_results_format option. By default, the tuning results
output format is CSV.

Tuning Using K-Fold Cross Validation

Tuning can also be done using K-fold cross validation. This is better than using a single hold out set which is
randomly generated as above. The downside is that it can be approximately K times slower. One strategy is to hone in
on approximate parameters using a holdout set and then fine tune the parameters using K-fold cross validation. In
the above we replace --holdout_ratio with --num_folds. The parameters with the best average results over all
folds are returned:

# skytree-server cf \

--training_in user_item.st \

--training_ratings_in user_item.ratings \

--k_neighbors 1:1:20 \

--num_folds 5

If both --num_folds and --holdout_ratio are provided then the algorithm will not do K-fold cross validation but
instead repeat K times with a new holdout tuning set and return the parameters with the best average results over
these K runs.

Tuning and Recommending

A testing dataset can be specified via the --testing_in option together with a tuning set (either user-supplied or
held out). The program will first tune for the best parameters as above and use the model giving the best mean
absolute error for recommendation. If --model_out is specified, the best model will be stored to a file as well.

If a holdout dataset was generated, a new model will first be generated using the full training dataset.

The following command runs the entire process:

# skytree-server cf \

--training_in user_item.st \

--training_ratings_in user_item.ratings \

--similarity_function all \

--k_neighbors 1:1:20 \

--num_recommendations 10 \

--holdout_ratio 0.2 \

--recommendations_out recommendations

Content-Based Filtering

Content-based filtering relies on the item or user features to produce recommendations rather than relying on the
collaborative watching/rating history of the items or users. The --alpha parameter is used to find a tradeoff
between the two components. Specify --alpha=0 for pure collaborative filtering, or use --alpha=1 for pure content-
based filtering. When performing content-based filtering, the item-feature-based part of the similarity function is set to
cosine or adjusted cosine for the case of unary and non-unary item features, respectively, while the collaborative
filtering part of the similarity function is still set by the user. (Unary item features are analogous to unary ratings, in
the sense that a given unary feature is either present or non-present for an item, without a numerical value attached.
Non-unary item features, on the other hand, have assigned values.) --item_features_in specifies the file that
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includes the item features. This file uses the same format as the user item file, but the first column is the index of the
feature. --item_features_value_in is the file containing the ratings for these item features. This has the same
format as the ratings file. The item features are interpreted as unary when the --item_features_value_in flag is
not present.

The following command runs the entire process:

# skytree-server cf \

--training_in user_item.st \

--training_ratings_in user_item.ratings \

--alpha 1 \

--item_features_in item_features.st \

--item_features_value_in item_features.value \

--recommendations_out recommendations

Objective Functions

The cf module by default selects the tuned model with the best mean absolute error to be used for testing and/or file
output. Alternatively, you can specify a different method. In addition to mean absolute error, typical methods can
include mean squared error, root mean squared error, and L1/L2 relative error. The cf module provides additional
alternative objective functions that you can use. Based on the following assumptions:

• Let Pi be the set of top k recommended items for user i (i=1,...N)

• Let Si be the set of

▪ the highest rated k items (or less if the user has rated less than k items)

or

▪ all items in the unary case.

• Let Ri be the size of the intersection between Si and Pi (Ri=|Si∩ Pi|)

• Let Ti bet the minimum between the size of Si and k (Ti=min|Si|, k)

then these metrics are defined as follows:

∑
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Use the --objective_function option to specify an objective function to use during tuning.

# skytree-server cf \

--training_in user_item.st \

--recurrent \

--unary \

--max_sims_per_item 0 \
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--objective_function hit_rate \

--k_for_precision 10 \

--tuning_in items.test \

--tuning_ratings_in items.ratings

Similarity Functions

Several measures are available to determine the similarity between items. The function can also be tuned by
specifying multiple comma-separated values or, to try all valid functions, by specifying --similarity_

function=all. In the example below, the output is specified to be in json format.

# skytree-server cf \

--training_in user_item.st \

--training_ratings_in user_item.ratings \

--similarity_function all \

--k_neighbors 1:1:20 \

--num_recommendations 10 \

--holdout_ratio 0.2 \

--recommendations_out recommendations.json \

--format_out json

The available similarity functions for ratings-based recommendation are:

• cosine

• adjusted_cosine (default for ratings-based and item features)

• adjusted_cosine_norm

• pearson

• pearson_norm

• co-occurrence

• all (uses all above similarity functions during tuning)

The available similarity functions for unary recommendation are:

• cosine (default for ratings-based and item features)

• conditional_prob

• jaccard

• co-occurrence

• all (uses all supported similarity functions for unary case during tuning)

Controlling Accuracy, Speed, and Memory Usage

There are several options to control the accuracy, speed and memory usage for the Item-Based Collaborative Filtering
module. For simplicity, the verbiage is directed towards the non-unary case, but the principles apply generally.

Recall that for each user for which recommendations are to be made, recommendations are formed by computing
predicted ratings for all the items the user hasn’t yet rated, and returning the items with the highest predicted ratings.

Chapter 6 Recommendation Confidential Skytree Server User Guide | 147



The predicted ratings for an unrated item are computed by iterating over rated items and adding the product of the
rating and the similarity to the to-be-rated item. Exactly which of the previously rated items are considered in this pair-
wise sum significantly affects the accuracy and computational requirements. For example, only the most similar
items or only those items matching certain other criteria can be included.

Per default, all relevant items are considered and the highest intrinsic accuracy of the method can be obtained after
tuning for all similarity functions, thresholds and number of neighbors (and potentially setting some Boolean flags in
the unary case). Note that for big datasets, storing all similarities between items rated by at least two users can lead
to large memory requirements (lots of non-zeroes in the similarity matrix), and it might make sense to only store the
top 1000 similarities per item for example, without affecting accuracies too much.

The sections that follow provide a list of the options that have the biggest impact on numerical and computational
performance.

Similarity Threshold

The (tunable) --threshold option affects accuracy (not speed or memory usage), by setting a minimal threshold of
similarity values to be considered for making rating predictions and recommendations. The default threshold is 0.0,
which means it excludes dissimilar items (negative similarity). To exclude items that are only slightly similar, a
threshold of, e.g., 0.1 can be specified.

Number of Neighbors

The number of neighbors to be used when making rating predictions is specified by the (tunable) option --k_

neighbors and mostly affects accuracy, slightly affects speed and doesn’t affect memory usage. As mentioned
previously, together with the similarity threshold, the number of neighbors is a fundamental tuning parameter to
obtain high accuracy in predicted ratings. The default value of 0 will include all the available similarities between
items the user has rated and the item for which a prediction is made.

Maximum Number of Similarities per Item

The maximum number of similarities retained for each item is specified via the (tunable) option --max_sims_per_

item. This affects accuracy, speed and memory usage. At the default value of 0, all similar items are retained.
Restricting the number of non-zeroes in the similarity matrix can deteriorate accuracy, but can significantly reduce
memory usage and increase speed.

Minimum Number of Ratings per User

The minimum number of ratings per user for consideration in the similarity matrix computation can be specified via
the (tunable) option --min_ratings_per_user. This parameter affects accuracy, speed and memory usage
indirectly via the size of the resulting similarity matrix. With a default value of 1, every rated item will be included.

Mean Imputation

When making recommendations, the option --mean_impute (default: on) forces the number of recommendations for
every user to be the requested number of recommendations even in the absence of enough meaningful data. This can
happen, for example, when a user has not rated enough items or if not enough similar items can be found, possibly
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due to some of the options mentioned in this section. In that case, the mean global rating will be used to predict user-
item ratings.

Note that this option is only used as a last resort to fill in missing recommendations. Existing valid recommendations
are never replaced, even if they have a lower predicted rating than the global average rating (a personalized rating is
generally expected to be better than a global rating).

Mean imputation affects recommendation accuracy (it allows otherwise missing recommendations to exist) and can
affect speed and memory usage if the number of requested recommendations is much larger than the number of
otherwise available recommendations.

Note: If --mean_impute is turned on with unary data, this option will automatically be turned off, and
--popularity_impute will be turned on instead.

Popularity Imputation

When making recommendations, the option --popularity_impute pads the list of recommendations with the most
popular items. This option substitutes and overrides --mean_impute in the case of unary ratings (--unary=on). In
this case, popular items will be appended to the recommendations list with a rating of 0.

Note: If --popularity_impute is turned on with non-unary data, this option will automatically be turned off,
and --mean_impute will be turned on instead.

Biased Prediction

The option --biased_prediction (default: off) corrects for biased baselines and can lead to higher accuracies
without affecting runtime or memory usage. For illustration: If a user’s ratings are generally a lot lower or higher than
the average rating across all users, then this subjective bias is accounted for when computing similarities between
the items this user has rated and items rated by other users. The same can be true for items that get low or high
relative ratings. Only either user- or item-based biases can be accounted for at once. For adjusted_cosine and
adjusted_cosine_norm similarity functions, the user’s mean rating is taken into account when making predictions
(and hence recommendations). For pearson and pearson_norm similarity functions, the item’s mean rating is used
instead.
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Chapter 7 Scoring

The scoring methods consist of the following quality metrics:

• Classification Scoring:

▪ Confusion Matrix (page 152)

▪ Gini Index (page 156)

▪ Capture Deviation (page 159)

▪ Precision/Recall at Top k (page 162)

• Regression Scoring:

▪ (root) mean absolute/squared error

▪ (relative) L1/L2 error

▪ Coefficient of Determination (page 165)

▪ Normalized Gini (page 166)

• Ranking Scoring:

▪ Mean Average Precision (MAP) (page 167)

▪ Mean Reciprocal Ranking (MRR) (page 167)

▪ Normalized Discounted Cumulative Gain (NDCG) (page 167)

• Weighted Scoring

• Recommendation Scoring

The Prediction methods allows incorporation of class weights in the scoring module for classification. Currently, only
binary classification is supported. The Class Weights (page 164) section discusses situations where class weights are
useful and how they can be used in the Prediction modules. Finally, Yield Scoring is also available for use when, for
example, attempting to determine fraud.

As with every command, you can run the following to see the available options:

# skytree-server score --help

and
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# skytree-server score-recommendation --help

You can also refer to Scoring Options (page 321) and Recommendation Scoring Options (page 320) in the Command
Reference appendix.

Classification Scoring

For classification methods, predicted probabilities and labels can be compared against known results. The Prediction
methods can be used to compute the confusion matrix and derived metrics, Gini, and capture deviation.

Confusion Matrix

The confusion matrix is a table to visualize the performance of certain supervised machine learning methods, such as
classifiers. Each column of the matrix represents the instances in a predicted class, while each row represents the
instances in an actual class. For binary classifiers, the confusion matrix summarizes the number of correct and false
classifications in both directions (i.e., both true and false positives and negatives).

The confusion matrix is also available with a precision recall (PR) curve when the --pr_curve_out option is
specified. The output includes the precision, recall, probability threshold, true positives (TP), false positives (FP), true
negatives (TN), false negatives (FN), and the percentile (number of points vs. total number of points).

A Simple Example

The weighted nearest neighbors classifier method, wnnc, is applied on the SDSS dataset:

# skytree-server wnnc \

--k_neighbors 20 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--labels_out labels.wnnc \

--scores_out scores.wnnc \

--probabilities_out probs.wnnc

Given actual labels sdss.train.labels for the training points in sdss.train.st, this will produce a file,
labels.wnnc, containing predicted labels for the test points in sdss.test.st.

Run the following command to produce the confusion matrix from the two label files:

# skytree-server score \

--true_labels_in sdss.test.labels \

--predicted_labels_in labels.wnnc

The output will contain the a per-class confusion matrix along with an aggregated confusion matrix:

Confusion Matrix:

+-----------------------------------------------+

| Labels | Pred -1 | Pred 1 |

|===============================================|

| True -1 | 334 | 65 |

|----------------------+------------+-----------|
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| True 1 | 16 | 2045 |

+-----------------------------------------------+

Aggregate:

+------------------------------------------------------------+

| Class | Total | Right | Wrong |

|============================================================|

| -1 | 399 | 334 | 65 |

|------------------+-------------+-------------+-------------|

| 1 | 2061 | 2045 | 16 |

|------------------+-------------+-------------+-------------|

| Overall | 2460 | 2379 | 81 |

+------------------------------------------------------------+

The confusion matrix has predictions on the diagonals with the off-diagonals representing the mistakes. In the binary
case, the diagonal contains the true positives and true negatives, while the off-diagonals represent the false positives
and the false negatives.

The aggregated confusion matrix is the 2x2 matrix in the upper right corner. Note that the target class is defined as
the class with label 1 and that class labels are sorted numerically from top to bottom. Hence, the first row of the
confusion matrix contains the number of true negatives (TN) and false positives (FP), while the second row contains
the number of true positives (TP) and false negatives (FN). The confusion matrix is padded on the left and bottom
with simple counts of the total number of points for each label and the number of correctly and wrongly classified
points.

Precision Recall Curve

Given true labels and probabilities, use the --pr_curve_out option to write a summarized precision recall (PR)
curve of a desired size to this file. The output also provides information about the confusion matrix. The PR curve
size defaults to 1000, which outputs an entry per 0.1%-tile of the test points.

Using the same wncc example from the previous section, run the following command to produce the PR curve output.

# skytree-server score \

--true_labels_in sdss.test.labels \

--predicted_labels_in labels.wnnc \

--yield_values_in sdss.test_values \

--classweight 3 \

--classweight 7 \

--log accuracy_cw3_7.log \

--probabilities_in probabilities.class1 \

--precision_recall_out recall3_7 \

--pr_curve_out pr_curve_out_3_7 \

--pr_curve_size 200

The output includes the precision, recall, probability threshold, true positives (TP), false positives (FP), true negatives
(TN), false negatives (FN), and the percentile (number of points vs. total number of points).

Note: This option is different than --precision_recall_out, which writes the precision recall curve for each of
the unique predicted probabilities and does not include confusion matrix information.
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Classification Metrics

The output will also contain the following statistics:

Classification Accuracy: 0.974797

Recall/Sensitivity (True Positive Rate): 0.992237

False Positive Rate: 0.115288

Precision: 0.978001

F-Score: 0.985067

• The Classification Accuracy is the number of correctly classified points for both classes (TP+TN) divided by
the total number of points.

• The Recall/Sensitivity is defined as the true positive rate: TP (points correctly labeled 1) divided by the
actual number of points of class 1.

• The False Positive Rate is the number of FP (points mistakenly labeled 1) divided by the number of points
not belonging to class 1.

• The Precision is defined as the number of TP divided by the number of points classified as belonging to class 1
(TP+FP).

• The F-Score is defined as:

⋅ ⋅2 Prescision Recall

Precision+Recall

Optimizing Classification Labels

The score module can be used to generate labels when only probabilities are provided. The labels can be generated
by specifying a --probability_threshold, which can be used to separate the positive and negative classes:

# skytree-server score \

--true_labels_in sdss.test.labels \

--probabilities_in probs.wnnc.class1 \

--labels_out labels.wnnc.0.6 \

--probability_threshold 0.6

A new set of labels has been written to labels.wnnc.0.6, and the associated confusion matrix and classification
metrics have now changed:

Confusion Matrix

----------------

Class Total Right Wrong

-1 399 357 42

1 2061 2043 18

Overall 2460 2400 60

Classification Accuracy: 0.97561

Recall/Sensitivity (True Positive Rate): 0.991266

False Positive Rate: 0.105263

Precision: 0.979856

F-Score: 0.985528

A threshold can also be generated automatically to give optimal accuracy or F-Score. To do so, specify either
--classification_objective=accuracy or --classification_objective=fscore:
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# skytree-server score \

--true_labels_in sdss.test.labels \

--probabilities_in probs.wnnc.class1 \

--labels_out labels.wnnc.0.7 \

--classification_objective accuracy

which gives

...

Optimizing classification using objective ’accuracy’

Optimal probability threshold : 0.757778

...

Confusion Matrix

----------------

Class Total Right Wrong

-1 399 377 22

1 2061 2040 21

Overall 2460 2417 43

Classification Accuracy: 0.98252

Recall/Sensitivity (True Positive Rate): 0.989811

False Positive Rate: 0.0551378

Precision: 0.989331

F-Score: 0.989571

Integration Into Other Methods

When the Prediction methods are combined with other Skytree Server methods, then powerful combinations of
supervised machine learning algorithms and scoring are possible. For example, the following command will perform
automatic optimization of the parameter k (the number of neighbors used for scoring) for highest F-score:

# skytree-server wnnc \

--k_neighbors 10:2:30 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--classification_objective fscore

The output will show the confusion matrix obtained for the optimal parameter:

=============================================================

Model with the best F-Score

=============================================================

Gini: 0.970118

Confusion Matrix

----------------

Class Total Right Wrong

-1 409 379 30

1 2110 2096 14

Overall 2519 2475 44

Classification Accuracy: 0.982533

Recall/Sensitivity (True Positive Rate): 0.993365

False Positive Rate: 0.0733496
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Precision: 0.985889

F-Score: 0.989613

Note that the F-Score is higher than what was achieved in the previous example.

The confusion matrix also accounts for (and indicates) class weights (typically the same class weights are also used
for classification):

# skytree-server score \

--true_labels_in sdss.test.labels \

--predicted_labels_in labels.wnnc \

--classweight 1 \

--classweight 5

Confusion Matrix

----------------

Class Total Right Wrong

-1 (*1) 399 353 46

1 (*5) 10305 10225 80

Overall 10704 10578 126

Classification Accuracy: 0.987948

Recall/Sensitivity (True Positive Rate): 0.992237

False Positive Rate: 0.122807

Precision: 0.995231

F-Score: 0.993731

Gini Index

The Gini index is a well-established method to quantify the inequality among values of a frequency distribution, and
can be used to measure the quality of a binary classifier. A Gini index of zero expresses perfect equality (or a totally
useless classifier), while a Gini index of one expresses maximal inequality (or a perfect classifier).

The Gini index is defined based on either the receiver operating characteristic (ROC) curve or the Lorenz curve. The
ROC curve plots the true positive rate (y-axis) as a function of the false positive rate (x-axis), while the Lorenz curve
plots the true positive rate (y-axis) as a function of percentiles of the population (x-axis).

Consider a set of points sorted by the predicted scores or probabilities (from high to low) as predicted by the
classifier. Starting at (0,0), for the ROC curve, each classification of a point either leads to the curve going up (if the
classification was correct) or to the right (if the classification was wrong). A random classifier will draw a diagonal
line (in expectation), while a perfect classifier will go straight up from (0,0) to (0,1). For the Lorenz curve, a correct
classification will lead to a step up and right, while a wrong classification will lead to a step to the right. A random
classifier will still draw a diagonal, but a perfect classifier will go from (0,0) to (p,1), where p is the probability for a
point being in class 1.

The ROC or Lorenz curve represents a collective of models represented by the classifier. The location on the curve is
given by the probability threshold of a particular model (i.e., lower probability thresholds for classification typically
lead to more true positives, but also to more false positives).

The Gini index itself is independent of the model, and only depends on the ROC or Lorenz curve determined by the
distribution of the scores (or probabilities) obtained from the classifier.

To compute the Gini index, you must compute the area under the curve (AUC) and compare it against the area under
the curve for a worst possible “diagonal” classifier (AUD), and the area under the curve for the perfect classifier (AUP):

156 | Skytree Server User Guide Confidential Chapter 7 Scoring



Gini:=
AUC−AUD

AUP−AUD

Skytree Server features several ways to compute these areas. The default option is exact calculation based on point-
by-point integration along the involved curves.

A Simple Example

The examples will use the datasets distributed along with the documentation.

The weighted nearest neighbors classifier, wnnc, method is applied on the SDSS dataset:

# skytree-server wnnc \

--k_neighbors 20 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--scores_out scores.wnnc \

--probabilities_out probs.wnnc

Given actual labels sdss.train.labels for the training points in sdss.train.st, this will produce files containing
predicted scores, scores.wnnc.class-1 and scores.wnnc.class1 and probabilities probs.wnnc.class-1 and
probs.wnnc.class1.

The Gini index can be computed from the scores:

# skytree-server score \

--true_labels_in sdss.test.labels \

--scores_in scores.wnnc.class1

Similarly, the Gini index can also be computed based on probabilities:

# skytree-server score \

--true_labels_in sdss.test.labels \

--probabilities_in probs.wnnc.class1

Gini Index Calculation Details

To see more details from the computation of the Gini index, turn on the verbose loglevel with --loglevel=verbose

option:

# skytree-server score \

--true_labels_in sdss.test.labels \

--scores_in scores.wnnc.class1 \

--loglevel verbose

Now, the printout contains the numerical values of the three areas needed to compute the Gini index:

Parameters used for Gini calculation:

Integration rule: mid

Number of integration points: 2460

Area under the ROC curve: AUC=0.987075

Area under the ROC curve of the perfect classifier: AUP=1
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Area under the diagonal: AUD=0.5

Gini index: Gini=(AUC-AUD)/(AUP-AUD)=0.974149

Gini index: 0.974149

As mentioned above, the Gini index can be computed based on either the ROC or the Lorenz curve. The default is the
ROC curve (--curve=roc), but the Lorenz curve can be selected with --curve=lorenz:

# skytree-server score \

--true_labels_in sdss.test.labels \

--scores_in scores.wnnc.class1 \

--curve lorenz \

--loglevel verbose

Note that the Gini index is identical for both curves, as the ratio of the areas remains the same under affine
transforms.

If the option --curve_out is specified, a file is emitted that contains the ROC or Lorenz curve data points for further
review or post-processing:

# skytree-server score \

--true_labels_in sdss.test.labels \

--scores_in scores.wnnc.class1 \

--curve lorenz \

--curve_out curve.st \

--loglevel verbose

For this case, the file curve.st contains a set of two-dimensional points that represent the Lorenz curve for the
classifier defined by the scores and labels given by scores.wnnc.class1 and sdss.test.labels.

Note, again, that other viable classifiers are defined by the scores for the non-target class or by the predicted
probabilities (for either class). Those can be passed in as the argument for --probabilities_in as well, and they
will define the sort order for the dataset. For nearest neighbor classification (nnc), the resulting Gini index will be the
same for scores and probabilities, but for a weighted nearest neighbor classifier (wnnc), the results can differ. Refer to
the Advanced Nearest Neighbor Methods (page 52) section for more information.

Advanced Options

Skytree Server presents a set of advanced options to control how the Gini index is computed.

The set of true labels sorted by the values in the file given by --probabilities_in defines the ROC/Lorenz curve.
The Gini index depends on the area under that curve (AUC) and the curves defined by the perfect (AUP) and the
random (AUD) classifiers (and on how accurately they are computed). Per default, the exact Gini index is computed
based on the entire dataset.

For the Lorenz curve, there is an option (--percentiles_in) to specify a file containing a set of sample points for
the area calculations. Percentiles are given by values between 0 and 100, as seen in the example below.

The area under of the curve given by those sample points is computed as follows. Consider the straight curve given
by the two points (x1, y1) and (x2, y2), and let A be the area under that curve above y = 0.

If --percentiles_in is omitted, exact integration is performed by sampling the curves as finely as possible (i.e., at
every data point), and by using the trapezoidal rule which yields A = (x2 - x1) * (y2 + y1) / 2, the exact value.
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If percentiles are given via the --percentiles_in option, then Ahigh = (x2 - x1) * (y2) (rectangular rule using the high
point) is used for each section.

Hence, specifying --percentiles_in=percentiles for a file containing decile-wise sampling positions created by
the command-line (see below)

# echo "10 20 30 40 50 60 70 80 90 100" > percentiles

will lead to the same results as taking a sum over the decile-wise samples taken from the Lorenz curve, and then
dividing by ten to obtain the approximate area under the curves.

Note that sampling based on --percentiles_in will typically lead to approximate Gini index values that differ from
the exact values obtained without using --percentiles_in.

Also note that the shape of the ROC/Lorenz curves will depend on the class weights, since they determine how often
each point is counted. Hence, the Gini index will depend on the class weights if percentiles are specified, as the
sampling approximations will have different effects. If --loglevel=verbose is specified, the percentile-based
number of observations and capture rates are printed. Use the following command:

# skytree-server score \

--true_labels_in sdss.test.labels \

--scores_in scores.wnnc.class1 \

--percentiles_in percentiles \

--curve lorenz \

--classweight 1 \

--classweight 1 \

--loglevel verbose

Had the input data been stratified, and the class weights for each class were larger than 1, then the total number of
observations would go up. You can observe this with the following command:

# skytree-server score \

--true_labels_in sdss.test.labels \

--scores_in scores.wnnc.class1 \

--percentiles_in percentiles \

--curve lorenz \

--classweight 3 \

--classweight 5 \

--loglevel verbose

Again, class weights will not affect the Gini index, unless --percentiles_in is used (and is more granular than
sampling at every single data point).

Of course, the class weights used for scoring should be identical to the class weights used for obtaining the
probabilities.

Capture Deviation

Skytree Server features the computation of the capture deviation, a conceptually simple but powerful method to
quantify the accuracy of predicted probabilities for binary classifiers. It is defined as a normalized sum of piece-wise
absolute deviations between the predicted probabilities and the actual probabilities:
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capture deviation :=
∑ | prob −prob |

∑ prob

i

i

i
actual

i
predicted

i
actual

The best possible capture deviation value is 0. The actual and predicted probabilities are obtained by counting the
actual fraction of points in class 1, and by taking the average over the predicted probabilities to be in class 1:

∈

∑ δ qprob = (label( ) == 1)

q Σ
i
actual 1

| ∑ |
i

i

∈

∑ qprob = prob ( )

q Σ
i
predicted 1

| ∑ | 1
i

i

Note that the sums are taken over a selected number of quantiles ∑i, and after sorting the points q by the predicted
scores or probabilities (whichever file is used as input for --scores_in) (highest to lowest).

Skytree Server allows the specification of the number of partitions of the dataset. The default value is 10, leading to
ten deciles as the used quantiles for summation.

A Simple Example

For this example, the nearest neighbors classifier method, nnc, is applied on the SDSS dataset:

# skytree-server nnc \

--k_neighbors 20 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--scores_out scores.nnc \

--probabilities_out probs.nnc

Given actual labels sdss.train.labels for the reference points in sdss.train.st, this will produce files
containing predicted scores scores.nnc.class-1, scores.nnc.class1 and predicted probabilities
probs.nnc.class-1, probs.nnc.class1 for each class..

Now run the following command to compute the capture deviation for the obtained results:

# skytree-server score \

--true_labels_in sdss.test.labels \

--scores_in scores.nnc.class1 \

--probabilities_in probs.nnc.class1

Note that unless the computation of the capture deviation is explicitly disabled with --capture_deviation=off,
the Prediction methods will automatically determine whether or not the capture deviation can be computed from the
given input files.

The output will contain the following low capture deviation score, indicating good prediction performance:

Capture deviation: 0.0118874

To see more details about the computation, use --loglevel=verbose:
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# skytree-server score \

--true_labels_in sdss.test.labels \

--scores_in scores.nnc.class1 \

--probabilities_in probs.nnc.class1 \

--loglevel verbose

Computing capture deviation based on 10 quantiles:

For top 0.00% to 10.00%: number of observations: 246, \

predicted capture rate: 1, actual capture rate: 0.987805

For top 10.00% to 20.00%: number of observations: 246, \

predicted capture rate: 1, actual capture rate: 1

For top 20.00% to 30.00%: number of observations: 246, \

predicted capture rate: 1, actual capture rate: 1

For top 30.00% to 40.00%: number of observations: 246, \

predicted capture rate: 1, actual capture rate: 1

For top 40.00% to 50.00%: number of observations: 246, \

predicted capture rate: 1, actual capture rate: 1

For top 50.00% to 60.00%: number of observations: 246, \

predicted capture rate: 1, actual capture rate: 1

For top 60.00% to 70.00%: number of observations: 246, \

predicted capture rate: 1, actual capture rate: 1

For top 70.00% to 80.00%: number of observations: 246, \

predicted capture rate: 0.992276, actual capture rate: 0.96748

For top 80.00% to 90.00%: number of observations: 246, \

predicted capture rate: 0.469106, actual capture rate: 0.414634

For top 90.00% to 100.00%: number of observations: 246, \

predicted capture rate: 0, actual capture rate: 0.00813008

Mean predicted capture rate: 0.846138, mean actual capture rate: 0.837805

Capture deviation: 0.0118874

To use a different number of (equidistant) quantiles, the value can be specified with --capture_deviation_

quantiles. For example:

# skytree-server score \

--true_labels_in sdss.test.labels \

--scores_in scores.nnc.class1 \

--probabilities_in probs.nnc.class1 \

--capture_deviation_quantiles 4 \

--loglevel verbose

Computing capture deviation based on 4 quantiles:

For top 0.00% to 25.00%: number of observations: 615, \

predicted capture rate: 1, actual capture rate: 0.995122

For top 25.00% to 50.00%: number of observations: 615, \

predicted capture rate: 1, actual capture rate: 1

For top 50.00% to 75.00%: number of observations: 615, \

predicted capture rate: 1, actual capture rate: 1

For top 75.00% to 100.00%: number of observations: 615, \

predicted capture rate: 0.384553, actual capture rate: 0.356098

Mean predicted capture rate: 0.846138, mean actual capture rate: 0.837805

Capture deviation: 0.00994663

Similar to the percentile-based Gini index calculation, the quantile-based capture deviation can also account for class
weights (assuming stratified training data):
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# skytree-server score \

--true_labels_in sdss.test.labels \

--scores_in scores.nnc.class1 \

--probabilities_in probs.nnc.class1 \

--capture_deviation_quantiles 4 \

--classweight 1 \

--classweight 5 \

--loglevel verbose

Computing capture deviation based on 4 quantiles:

For top 0.00% to 25.00%: number of observations: 2678, \

predicted capture rate: 1, actual capture rate: 0.99888

For top 25.00% to 50.00%: number of observations: 2675, \

predicted capture rate: 1, actual capture rate: 1

For top 50.00% to 75.00%: number of observations: 2675, \

predicted capture rate: 1, actual capture rate: 1

For top 75.00% to 100.00%: number of observations: 2676, \

predicted capture rate: 0.820889, actual capture rate: 0.852018

Mean predicted capture rate: 0.955222, mean actual capture rate: 0.962724

Capture deviation: 0.00837436

Precision/Recall at Top k

For a user specified k (specified via --k_for_precision_recall), Skytree Server allows the computation of the
precision and recall at the top k for a set of test points with respect to their probabilities of being in the target class.
The precision at top k is defined as

kPrecision@top :=
k

k

number of true positives in the top probabilities

and the top recall at top k is defined as

kRecall@top :=
knumber of true positives in the top probabilities

total number of positives in the test set

The precision and recall at the top k depends on the size of the test set and the number of positives in the test set
relative to k. For example, if k is almost as large as the test set, the recall at top kwill be very close to 1 regardless of
the classifier used. Similarly, if k is chosen to be much higher than the total number of positives in the test set, then
the precision at top k will always be very small irrespective of the classifier used.

For this reason, Skytree Server allows the specification of k relative to the size of test set via --k_for_precision_

recall=K. The input value K should lie between 0 and 1 and implies k = K x nt where nt is the test set size. This is also
known as precision and recall at the top 100K-th percentile.

It might be the case that all the probabilities are not unique and the kth highest probability might be equal to the (k +
1)th, (k + 2)th, ..., k′ th highest probabilities. In this case, we compute precision/recall at the top k′. For test points with
equal probabilities, if one point with a particular probability p is included in the top k, then all other points with the
same probability p should also be included in the top k. In this case, the numerator and denominator in the
computation of the precision (and recall) at the top percentile is appropriately adjusted.

A Simple Example

The examples use the datasets distributed along with the documentation.
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The weighted nearest neighbors classifier method, wnnc, is applied on the SDSS dataset:

# skytree-server wnnc \

--k_neighbors 20 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--probabilities_out probs.wnnc

Given actual labels sdss.train.labels for the training points in sdss.train.st, this will produce files containing
the probabilities probs.wnnc.class-1 and probs.wnnc.class1.

The precision and recall at top k can be computed from the probabilities:

# skytree-server score \

--true_labels_in sdss.test.labels \

--probabilities_in probs.wnnc.class1

If --k_for_precision_recall is not specified, it defaults to 0.1, computing precision and recall at the top 10-th
percentile. The output contains the computed values of the precision and recall at the top 10-th percentile

Precision at top 10-th percentile: 0.987805

Recall at top 10-th percentile: 0.117904

The --k_for_precision_recall can be specified as follows for any desired k:

# skytree-server score \

--true_labels_in sdss.test.labels \

--probabilities_in probs.wnnc.class1 \

--k_for_precision_recall 0.3

to get the following output:

Precision at top 30-th percentile: 0.995935

Recall at top 30-th percentile: 0.356623

The precision and recall at top k can also be computed based on the scores as well. The precision/recall at top k
depends on the ordering of the test points. This ordering is usually computed with respect to the probabilities of the
test points to be in the target class. However, if --scores_in is provided instead of --probabilities_in, the
Prediction methods utilize the scores of the test points to define an ordering. The scores for the test points (contained
in some file scores.wnnc.class) can be used as following:

# skytree-server score \

--true_labels_in sdss.test.labels \

--scores_in scores.wnnc.class1

Using the --precision_recall_out option, you can specify an output file to store the precision/recall information.

# skytree-server score \

--true_labels_in sdss.test.labels \

--probabilities_in probs.wnnc.class1 \

--precision_recall_out precision.recall.out.wnnc
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The output file includes three columns. The first column shows the precision, the second shows recall, and the third
shows the probability threshold at which the values occur.

Class Weights

The training sets are often formed by stratified sampling of the classes. (It is common for the non-target to be
downsampled in binary classification.) In this case, the data distribution of the training set is different from the
original data distribution. Hence, the probabilities assigned to test points of being in the target class do not
correspond to the true data distribution. This also affects the scoring of the classification performed by a model (with
respect to the various classification metrics).

Skytree Server allows the computation of the scores with respect to the original data distribution with the
--classweight option. This option corresponds to the weights of the class and must be repeated for each class in
--training_labels_in, and its values are used to artificially inflate the impact of the corresponding class (to
counter the effects of the stratified sampling).

For example, suppose that the SDSS dataset is used, and the non-target class is down-sampled to a tenth of its
original size to create the training set sdss.train.st. Then the nearest-neighbor classifier can be used as follows
with the modified class weights:

# skytree-server nnc \

--k_neighbors 20 \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--testing_in sdss.test.st \

--probabilities_out probabilities.nnc \

--labels_out labels.nnc \

--classweight 10 \

--classweight 1

Given actual labels sdss.train.labels for the training points in sdss.train.st, this will produce files containing
predicted probabilities probs.nnc.class-1 and probs.nnc.class1 and labels labels.nnc.

The default values of --classweight in the scoring module is 1 for every class. Since class weights are assigned
during the training of the model, they should also be assigned during the scoring. The scoring should be done as
follows:

# skytree-server score \

--true_labels_in sdss.test.labels \

--probabilities_in probabilities.nnc.class1 \

--predicted_labels_in labels.nnc \

--classweight 10 \

--classweight 1

Regression Scoring

For regression methods, predicted regression targets can be compared against testing targets, and typical error
metrics such as mean absolute error, mean squared error, root mean squared error, and L1/L2 error are meaningful
quantities to consider. Skytree Server calculates all of the above, in addition to the Coefficient of Determination (page
165) and Normalized Gini (page 166).
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A Simple Example

# skytree-server rdfr \

--num_trees 20 \

--training_in kddcup.train.st \

--training_targets_in kddcup.train.targets \

--testing_in kddcup.test.st \

--targets_out targets.rdfr

Given actual regression targets kddcup.train.targets for the training points in kddcup.train.st, this will
produce a file, targets.rdfr, containing predicted labels for the test points in kddcup.test.st. Refer to Ensemble
Learning Methods (page 59) for additional details.

Run the following command to produce the regression error metrics from the two target files:

# skytree-server score \

--true_targets_in kddcup.test.targets \

--predicted_targets_in targets.rdfr

The output will contain the following metrics:

• Mean absolute error

• Mean squared error

• Root mean squared error

• L1 error

• L2 error

• Relative L1 error

• Relative L2 error

• Coefficient of determination

• Normalized Gini

Most of them are well known, but we explain the coefficient of determination and normalized Gini in the next sections.

Coefficient of Determination

The coefficient of determination is given by
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∑
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For further information, consult this Web page (http://en.wikipedia.org/wiki/Coefficient_of_determination).
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Normalized Gini

For prediction targets Pi, and true targets ti:
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Normalized Gini with Negative Values

Normalized Gini is ill-defined for datasets with any negative response values. If this scenario is detected, the
normalized Gini is calculated with all response values shifted by -tmin, where tmin is the minimum response value. This
creates a non-negative set of response values.

Ranking Scoring

For ranking, recommendation, or other Information Retrieval methods, predicted scores can be compared against
known results. Skytree Server can be used to compute metrics such as Mean Average Precision, Normalized
Discounted Cumulative Gain, Mean Reciprocal Rank, etc.

Some metrics reported are only applicable to problems where the known relevance of the item is binary, i.e., items are
marked relevant or not relevant, and there is no varying degree of relevance. Metrics such as Mean Average Precision,
Mean Reciprocal Rank, and Precision@K fall into this category. Other metrics such as Normalized Discounted
Cumulative Gain are designed to be able to score items that have varying degrees of relevance. For example, the
relevance score may belong to the set:
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0,2,6

where 0 would represent irrelevant items, and items with relevance 6 are three times more relevant than items with
relevance 2.

Mean Reciprocal Ranking (MRR)

The reciprocal rank of a single query or recommendation is the multiplicative inverse of the rank of the first correct
answer. The MRR is simply the mean of such reciprocal ranks across a set of queries.

∑MRR=
1

rankQ
i

Q
1

=1 i

Mean Average Precision (MAP)

Precision and recall are single-value metrics based on the whole list of items returned by the system. (Refer to
Precision/Recall at Top k (page 162).) For systems that return a ranked sequence of items, it is desirable to also
consider the order in which the returned items are presented.

By computing a precision and recall at every position in the ranked sequence of items, you can plot a precision-recall
curve, plotting precision p(r) as a function of recall r. Average precision computes the average value of p(r) over the
interval from r=0 to r=1:

∫ p r drAveP= ( )
0

1

This is the area under the precision-recall curve. This integral is in practice replaced with a finite sum over every
position in the ranked sequence of items. The formula to compute the finite sum is:

AveP=
P k k∑ ( ( ) × rel( ) )

number of relevant items

k

n

= 1

where k is the rank in the sequence of retrieved items, P(k) is the precision at cut-off k in the list, rel(k) is an indicator
function equaling 1 if the item at rank k is a relevant item; zero otherwise.

Normalized Discounted Cumulative Gain (NDCG)

The premise of DCG, which extends to non-binary relevance scores, is that highly relevant items occurring higher up in
the list, i.e. given higher scores by the system should be rewarded logarithmically versus having them lower in the list.

The DCG is then defined as:

∑DCG =
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p

ip

=1

2 −1

log ( +1)

rel i

2

Search result lists vary in length depending on the query, so the cumulative gain at each position for a chosen value
of p should be normalized across queries. This is done by sorting items of a result list by relevance, producing the
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maximum possible DCG until position p (also called Ideal DCG (IDCG) until that position). For a query, the normalized
discounted cumulative gain, or NDCG, is computed as:

nDCG =
DCG

IDCGp
p

p

For a set of queries, we take the mean of these different NDCG values to get the average NDCG of the system.

A Simple Example

The ranking functionality in the gbt module is applied on the ranking dataset:

# skytree-server gbt \

--training_in ranking.train.st \

--training_labels_in ranking.train.binary.targets \

--num_trees 10 \

--probabilities_out probabilities \

--testing_in ranking.test.st \

--loss_function ndcg

Given actual relevance scores in ranking.train.binary.targets for the training points in ranking.train.st,
this will produce a file, probabilities, containing predicted scores for the test points in ranking.test.st.

Refer to the Ensemble Learning Methods (page 59) section for additional details.

To get the various metrics for the output scores we can run the following:

# skytree-server score-recommendation \

--true_labels_in ranking.test.binary.targets \

--scores_in probabilities \

--group_ids_in ranking.test.groupids

A Non-Binary Example

First, we train a model with non-binary relevance labels.

# skytree-server gbt \

--training_in ranking.train.st \

--training_labels_in ranking.train.targets \

--num_trees 10 \

--probabilities_out probabilities \

--testing_in ranking.test.st \

--loss_function ndcg

Then score the results:

# skytree-server score-recommendation \

--true_labels_in ranking.test.targets \

--scores_in probabilities \

--group_ids_in ranking.test.groupids
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In this case, Skytree Server automatically notices the non-binary nature of true relevance scores in the file
ranking.test.targets, which are in the set

0,1,5

and thus does not compute binary metrics such as MAP and MRR.

Weighted Scoring

There are many situations where the test points themselves have some weight associated with them. A point with a
high weight relative to the other points in the test set implies that a mistake on that point will be penalized more
severely than a mistake on the rest of the points. This weight for a point might correspond to how commonly this test
point occurs or how much this test point is worth. Skytree Server allows the user to provide this weight information to
the scoring module to get a “weighted” score which incorporates the effects of these weights for each of the points.

The --score_weights_in option should be used with skytree-server=score to provide a file containing the
weights for each of the test points, each row in the file containing the weight for the corresponding test point. This
option can be used for classification and regression scoring.

Weighted Classification Scoring

In classification scoring, the weighted scoring is performed by replacing the count (or cardinality) of a set of points
with the sum of the weights of the points in the set. For example, the (unweighted) classification accuracy is
computed as

Accuracy=
Number of test points correctly classified

Total number of points in the test set

In contract to this, the weighted accuracy would be compute as

Weighted Accuracy =
Sum of the weights of test points correctly classified

Sum of the weights of all the points in the test set

In a similar spirit, the weighted confusion matrix is created by replacing the number of true positives with the sum of
the weights of the true positives (with corresponding changes for true negatives, false positives and false negatives
in binary classification). The computation of the remaining classification scoring metrics (namely Gini, Capture
Deviation, Precision/Recall at top 100k-th percentile, F-Score, and Yield) are similarly modified to compute the
weighted score.

A Simple Example

Given files containing the true labels, predicted labels, and predicted probabilities of being in the target class for a
test set (the predicted labels and probabilities can be obtained by using any one of the classifiers available in
skytree-server), the usual classification scoring is done as follows:

# skytree-server score \

--true_labels_in sdss.test.labels \

--probabilities_in probabilities.nnc.class1 \

--predicted_labels_in labels.nnc

If a file containing the weights of the test points is available, it can be specified via the --score_weights_in option
to perform weighted classification scoring:
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# skytree-server score \

--true_labels_in sdss.test.labels \

--score_weights_in sdss.test.weights \

--probabilities_in probabilities.nnc.class1 \

--predicted_labels_in labels.nnc

Weighted Regression Scoring

Weighted scoring in regression is performed by taking a weighted sum of the errors made at the individual test
points. For example, the ℓ

2
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Similar modifications are done to compute the weighted ℓ
1

regression error, weighted mean absolute regression error,
and the weighted coefficient of determination.

A Simple Example

Given files containing the true targets and the predicted targets, (the predicted targets can be obtained by using any
one of the regressors available in skytree-server), the usual regression scoring is done as follows:

# skytree-server score \

--true_targets_in kddcup.test.targets \

--predicted_targets_in targets.rdfr

If a file containing the weights of the test points is available, it can be specified via the --score_weights_in option
to perform weighted regression scoring:

# skytree-server score \

--true_targets_in kddcup.test.targets \

--score_weights_in kddcup.test.weights \
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--predicted_targets_in targets.rdfr

Recommendation Scoring

The score module can be used to score recommendations produced in the --recommendations_out file.

Note: Recommendation scoring is only available when the --recommendations_out file was produced using
--format_out=csv. In addition, the users present in that recommendations file should also be present in the
test file that has the true user-item pairs (--true_user_item_in file).

Non-Unary Example

As indicated previously, the following example recommends 10 items for each user and writes the recommendations
to the file recommendations.

# skytree-server cf \

--training_in user_item.st \

--training_ratings_in user_item.ratings \

--num_recommendations 10 \

--recommendations_out recommendations \

--format_out csv

These recommendations can be scored as follows:

# skytree-server score \

--true_ratings_in user_item.ratings \

--true_user_item_in user.item \

--recommendations_in recommendations

Unary Example

The score module can also be used to score recommendations when ratings are not available. In this case, the
recommendations output file is produced using --unary=on.

# skytree-server cf \

--training_in user_item.st \

--unary \

--k_neighbors 20 \

--num_recommendations 10 \

--recommendations_out recommendations \

--format_out csv

When scoring unary recommendations, the --true_ratings_in option is not specified.

# skytree-server score \

--true_user_item_in user.item \

--recommendations_in recommendations
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Chapter 8 Distributed Module

The Skytree Server Distributed module enables parallel execution of Skytree Server across a compute cluster, a set of
computers connected via a network.

Before using the Distributed module, the compute cluster must be configured as described in the "Distributed
Installation" section of the Skytree Server Installation Guide. In particular, a shared file system must be available and
the user must be able to use ssh between any two computers of the cluster via public/private key authentication (i.e.,
without typing a password). Please consult your IT administrator for assistance in the cluster configuration.

Note: For execution of Skytree Server on Hadoop clusters, please refer to the YARN/Hadoop Module (page 181)
chapter.

Running Distributed Jobs

Running a distributed Skytree Server job is very similar to running on a single machine. The two important differences
are that:

• The --hosts option must be provided, followed by a comma-separated list of the computers (hosts) on which
Skytree Server will execute.

• All input and output files must reside on a shared file system.

Note: All input and output files must be accessible on each host via the same path, e.g.,
/path/to/shared/file/system/data.st can be used to access the file data.st from all hosts. The shared
file system should therefore be mounted with the same path on all hosts. If necessary, please contact your IT
administrator for assistance.

In a distributed job, one Skytree Server process will run on each host. Hosts may be specified by any resolvable name,
e.g., hostname or IP address. In special cases, the same host may be specified more than once. (See note below.)

The --procs_per_host option controls the number of processes for each --host. If the --procs_per_host
option is not provided, then Skytree Server will perform a single process on each host. If --procs_per_host is
provided without --hosts, then the specified number of processes will be used on localhost.
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Note: For performance tuning purposes, you may find it helpful to alter the number of threads and the number of
processes. A best practice is for the [number of processes] x [number of hosts] = [number of cores

on the machine]. A mixture of processes and threads may outperform using only threads. The optimal number
depend on the particular problem you're trying to solve and your hardware.

The --threads option in a distributed job controls the number of threads per process rather than the total number
of threads. For single host execution, the default number of threads is set to the maximum available on the host. In
distributed mode, the number of threads available to each host is the smallest maximum available number of threads
among the hosts. For example, if --hosts=host1,host2 is specified, and hosts host1 and host2 have,
respectively, 4 and 8 threads available, 4 threads will be used for each process.

Note: If a host is repeated, e.g., --hosts=host1,host1, it is recommended that the number of threads per
process is reduced to avoid overloading the host. Usually, when running p processes on a single host, divide the
threads available on the host by p.

The --memory option can be used with GBT/R, RDF/R, GLM/R, and SVM to specify the amount of memory (MB)
available for computation on each host. When training, testing, or tuning via grid-search, if Skytree Server cannot
operate within the given amount of memory, it fails with an error message indicating the amount of memory required
for computation. When tuning using --smart-search, Skytree Server automatically avoids parameter
configurations that would require more than the given amount of memory.  Because avoiding such parameter
configurations can alter the results of tuning, Skytree Server will also indicate the number of configurations it had to
ignore after tuning is completed. If --smart-search cannot generate parameter configurations that fit within the
given amount of memory, Skytree Server will fail with an error message.

In the examples below, we run distributed Skytree Server jobs using two processes on the “local” host, where the
command is typed. We address that host using the loopback interfaces localhost and 127.0.0.1 for simplicity.
(Both point to the same machine.) A shared file system is not required in these artificial examples.

Distributed Skytree Server execution is supported for the following algorithms:

• Nearest Neighbors (page 174)

• Ensemble Methods (page 175)

• Item-Based Collaborative Filtering (page 176)

• k-means (page 176)

• Support Vector Machines (page 177)

Nearest Neighbors

The Distributed module can be used with the nn, nnplus, nnc, and wnnc modules. To demonstrate, we run a
distributed job by simply appending the --hosts option to a Nearest Neighbors Plus (page 33) example:

# skytree-server nnplus \

--k_neighbors 5 \

--references_in random_1kx6.st \

--indices_out neighbors \

--distances_out distances \

--hosts localhost,127.0.0.1
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Ensemble Methods

This section provides examples of how the Distributed module can be used with the following methods:

• Random Decision Forests Classification and Regression (page 175)

• Gradient Boosted Trees Classification and Regression (page 175)

• Fast Gradient Boosted Trees Classification (page 176)

Random Decision Forests Classification and Regression

The rdf and rdfr modules may also be run across multiple hosts. We illustrate this using an rdf example found in
the Ensemble Learning Methods (page 59) section:

# skytree-server rdf \

--training_in income.data.st \

--training_labels_in income.data.labels \

--num_trees 100 \

--model_out model.simple \

--hosts localhost,127.0.0.1

Gradient Boosted Trees Classification and Regression

The gbt and gbtr modules allow various tuning parameter combinations to be run simultaneously, with one
parameter combination per host. Note that tuning the --num_trees presents a special case that will not be
distributed among the hosts.

The --regularization option in gbt or gbtr leads to all processes of the job participating in each model’s
training, tuning and testing. This option is enabled by default for gbt and gbtr; it is disabled by default for ensemble
gbt and gbtr.

For ensemble GBT (when --ensemble_size is used) each individual model is trained and tested using all hosts.
Whether training, tuning or testing, the model uses all the specified hosts to build the model.

We illustrate using a gbt example (found in the Tunable Parameters (page 89) section), which tunes across 8 different
parameter sets (disregarding --num_trees). Each of the two hosts specified will run four parameter combinations.

# skytree-server gbt \

--training_in income.data.st \

--training_labels_in income.data.labels \

--holdout_ratio 0.2 \

--num_trees 5:5:25 \

--tree_depth 2,3 \

--learning_rate 0.05:0.05:0.2 \

--regularization off \

--hosts localhost,127.0.0.1

GBT and GBTR models, in particular, occasionally perform better when the same host is specified multiple times,
either via the --hosts option or using the --procs_per_host option.

In contrast to the previous GBT example, the following ensemble GBT model uses all hosts to run 40 tuning
parameter combinations in sequence. It will also use all hosts in the testing phase.
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# skytree-server gbt \

--training_in income.data.st \

--training_labels_in income.data.labels \

--testing_in income.test.st \

--ensemble_size 10 \

--holdout_ratio 0.2 \

--num_trees 5:5:25 \

--tree_depth 2,3 \

--learning_rate 0.05:0.05:0.2 \

--probabilities_out probabilities \

--labels_out labels \

--regularization off \

--hosts localhost,127.0.0.1

Fast Gradient Boosted Trees Classification

The --regularization option is enabled by default for GBT and GBTR and specifies that each model is trained
and tested using all hosts. Whether training, tuning or testing, all specified hosts are used to build each model. Note
that the data size may exceed that of a single host’s memory; only a subset of the data is loaded into memory by
each host.

We illustrate using an example in which two hosts train a single GBT model. Note that the commands are similar with
GBTR.

# skytree-server gbt \

--training_in income.data.st \

--training_labels_in income.data.labels \

--regularization_bins 100 \

--num_trees 50 \

--tree_depth 3 \

--learning_rate 0.1 \

--model_out model.simple \

--hosts localhost,127.0.0.1

Item-Based Collaborative Filtering

Item-Based Collaborative Filtering (page 139) can also be run in distributed mode by specifying the --hosts option.

# skytree-server cf \

--training_in user_item.st \

--training_ratings_in user_item.ratings \

--similarity_function cosine \

--num_recommendations 10 \

--recommendations_out recommendations \

--similarity_out similarity_matrix \

--hosts localhost,127.0.0.1

k-means

k-means (page 41) can be used to cluster in distributed mode using the default fast exact heuristic method by
specifying the --hosts option:
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# skytree-server kmeans \

--references_in random_100kx6.st \

--centroids_out centroids.csv \

--k_clusters 4 \

--memberships_out assignments.csv \

--hosts localhost,127.0.0.1

k-means can also be used to cluster in distributed mode using Lloyd's algorithm by setting the
--algorithm=lloyds option and specifying the --hosts option. Lloyd's algorithm for k-means allows the data to
remain distributed, allowing datasets larger than the memory of a single machine.

# skytree-server kmeans \

--references_in random_100kx6.st \

--centroids_out centroids.csv \

--k_clusters 4 \

--algorithm lloyds \

--memberships_out assignments.csv \

--hosts localhost,127.0.0.1

Support Vector Machines

Details on the usage of svm can be found in SVM Usage Examples (page 109). A linear SVM model can be trained and
tested on distributed data in the following manner:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--kernel linear \

--lambda 0.1 \

--testing_in sdss.test.st \

--labels_out sdss.test.labels.lsvm.0.1 \

--hosts localhost,127.0.0.1

A linear SVM model can also be trained on distributed data and saved for later prediction in the following manner:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--kernel linear \

--lambda 0.1 \

--model_out sdss.lsvm.model.0.1 \

--hosts localhost,127.0.0.1

A saved linear SVM model can be used for making predictions on distributed data as follows:

# skytree-server svm \

--model_in sdss.lsvm.model.0.1 \

--testing_in sdss.test.st \

--labels_out sdss.test.labels.lsvm.0.1 \

--hosts localhost,127.0.0.1

The tuning of a linear SVM can also be done with distributed data where all processes will be involved in training a
linear SVM model on a single parameter setting at a time. The --tuning_results_out option can be used to save
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the tuning results, and the --tuning_results_format option allows you to specify whether the format for the
tuning results output file is CSV or JSON. Tuning with a user specified (distributed) --tuning_in and --tuning_

labels_in can be also be accomplished in a similar manner.

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--kernel linear \

--lambda 0.01,0.1,1,10 \

--num_folds 10 \

--hosts localhost,127.0.0.1

A nonlinear SVM model can be trained, tuned, and tested on distributed data. Both RBF and polynomial nonlinear
kernels are supported. For polynomial kernels, a --polynomial_degree, --polynomial_offset, and
--polynomial_scale must be specified. For RBF kernels, an --rbf_bandwidth must be specified. This is shown
in the following example:

# skytree-server svm \

--training_in sdss.train.st \

--training_labels_in sdss.train.labels \

--kernel rbf \

--rbf_bandwidth 1.0 \

--lambda 0.1 \

--testing_in sdss.test.st \

--labels_out sdss.test.labels.rsvm.0.1 \

--hosts localhost,127.0.0.1

Note: Changing the number of threads in linear SVM (single host or multi-host) or in nonlinear SVM (multi-host
only) can change results numerically. This will have only minimal effect on scoring when the models are trained
with sufficient accuracy. This behavior occurs only when --threads > 1.

Status Module

The status module utility allows simple monitoring of hosts in the compute cluster along with Skytree Server
processes in progress. It can be run at any time to query the current status of the cluster. Running

# skytree-server status --hosts localhost,127.0.0.1

returns information of the following form:

System status:

-------------------------------------------------------------------------

| | Avail. | Avail. | System | Total | Free |

| Hostname | Cores | Threads | Load (%) | Mem. (GB) | Mem. (GB) |

-------------------------------------------------------------------------

| host1 | 4 | 8 | 98.00 | 16.00 | 8.00 |

| host1 | 4 | 8 | 98.00 | 16.00 | 8.00 |

-------------------------------------------------------------------------

Active Skytree Server process(es) on host ’host1’:

-------------------------------------------------------------------------

| | | CPU | Total | Runtime |

| ProcessID | Username | Usage (%) | Mem. (GB) | [DD-]HH:MM:SS |
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-------------------------------------------------------------------------

| 1234 | skytree_user | 95.50 | 8.00 | 01:01 |

-------------------------------------------------------------------------

Active Skytree Server process(es) on host ’host1’:

-------------------------------------------------------------------------

| | | CPU | Total | Runtime |

| ProcessID | Username | Usage (%) | Mem. (GB) | [DD-]HH:MM:SS |

-------------------------------------------------------------------------

| 1234 | skytree_user | 95.50 | 8.00 | 01:01 |

-------------------------------------------------------------------------

If the --hosts option is not provided, the list of hosts found in the installation's hosts configuration file is used.
(Refer to the Skytree Server Installation Guide.) If the list is empty, then only the local host is used.
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Chapter 9 YARN/Hadoop Module

The Skytree Server YARN/Hadoop module enables execution of Skytree Server on a YARN or Hadoop cluster. We
recommend running Skytree Server in a YARN environment rather than the earlier Hadoop version. Running Skytree
Server in a YARN environment includes the following benefits:

• YARN provides better control over resources to applications (jobs) that are running on it.

• Machine-learning algorithms are often too complex to be done in a simple MapReduce paradigm. YARN provides
better integrations with workloads that include complex algorithms.

• YARN includes a Resource Manager that focuses on scheduling, making it better able to manage large clusters.

Before using the YARN/Hadoop module, the cluster must be configured as described in the Skytree Server Installation
Guide.

Data Preparation

On a YARN or Hadoop cluster, the data input files loaded by Skytree Server have the same format as elsewhere. In
order to create a file that can be loaded by Skytree Server, run the tools described in Data Preparation (page 9), and
copy the result to the cluster. Alternatively, if the raw data resides on the cluster, you can run a YARN or Hadoop
version of the data preparation tools.

A single data preparation tool for YARN and Hadoop, etl-hadoop.sh, performs all the necessary steps. This tool
runs a sequence of MapReduce jobs, leveraging the distributed processing capabilities of YARN and Hadoop. Most
of the options for the other data preparation tools have a corresponding option in this tool.

The -input_dir option specifies an input directory. All the files in that directory, except those whose names begin
with an underscore (_), become inputs to the tool.

Multiple input directories can be specified. When doing so, an -input_dir option must be included for each input
directory. (A comma-separated list is not supported.) If a header line exists in any data file in any of the input
directories, then all data files in all input directories must have the same header file. Finally, if -use_column_
weights is specified, then all input directories must have a "_weights" file.

The -output_dir option is the directory that stores the output files. When including a single input directory, Skytree
Server creates a file output.st in that directory. When including multiple input files, the output will produce .st files
with basename prefixes that mirror the input directories' basenames. For example, an input directory named data_

dir will output data_dir.st. This is different than a single input directory, which would output a file named
output.st. If input directories have matching basenames, then the output files append a "_n" to the basename to
differentiate the output files. For example, and if one input directory is /path/to/data_dir, and another input
directory is /path/to/other/data_dir, the output will be data_dir_1.st and data_dir_2.st.
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If used with a single input directory, the option -create_labels_file creates a file output.labels, and the
option -create_targets_file creates a file output.targets, also in the output directory. When including
multiple input files, the output will produce .labels and .targets using the same naming conventions described
for the .st output.

There are some other differences between the YARN-based or Hadoop-based tool and the other data preparation
tools. For example, the -min_percentiles and -max_percentiles options for generate-headers.sh are not
available in YARN and Hadoop. Those options require loading numeric data into main memory, which may not be
feasible for the large datasets stored on the clusters. Also, the -ignore_lines option is replaced by -use_column_
names. The reason is that, in YARN and Hadoop, it is not always possible to recognize the start of a file. If that option
is used, the first line of a file is used as a list of column names. In that case, all files in the input directory must begin
with the same list of column names. As a result, options that take a column argument can use those names instead
of numbers. Finally, the -skip_bad_lines and -max_bad_lines_per_mapper options are available in YARN and
Hadoop only.

You may need to provide memory size hints to YARN and Hadoop for etl-hadoop.sh to run successfully. After the
other arguments to the tool, use --, followed by memory parameters. For moderate-sized datasets, try the following
parameters:

-Dmapred.job.reduce.memory.mb=2048 \

-Dmapred.job.map.memory.mb=2048 \

-Dmapred.job.reduce.memory.physical.mb=2048 \

-Dmapred.job.map.memory.physical.mb=2048

Below are some examples of how to use the etl-hadoop.sh script (omitting, for space reasons, the memory size
hints just mentioned).

Note: When running etl-hadoop.sh, the specified -output_dir must not already exist.

# etl-hadoop.sh \

-input_dir data1_dir \

-input_dir data2_dir \

-output_dir etl_out \

-delimiter COMMA \

-horizontalize

# etl-hadoop.sh \

-input_dir data_dir \

-output_dir etl_out \

-categorical_number 5,9,13 \

-use_column_names

# etl-hadoop.sh \

-input_dir data_dir \

-output_dir etl_out \

-ignore_constant_columns \

-missing_value ? \

-mean_impute

# etl-hadoop.sh \

-input_dir data_dir \

182 | Skytree Server User Guide Confidential Chapter 9 YARN/Hadoop Module



-output_dir etl_out \

-ignore_columns 2 \

-delimiter , \

-categorical_number 3,4,5 \

-categorical_text 1 \

-label_index 1 \

-create_labels_file \

-allow_reordering

Certain conditions can result in bad lines: too few or too many columns, unrecognized categorical values (including
labels), and unparsable numerical values. The -skip_bad_lines option skips all bad lines encountered during the
data conversion process. The -max_bad_lines_per_mapper option specifies an upper limit on the number of bad
lines, and if more than the specified number of bad lines are found, then etl-hadoop.sh terminates. Note that this
option is most applicable when combined with the -header_input_dir option, in case the new data file contains
values or lines not seen in header generation. (Refer to Reusing Headers (page 185).) If -max_bad_lines_per_
mapper is specified without -skip_bad_lines, then etl-hadoop.sh will attempt to parse bad lines. Unrecognized
and/or unparsable values or values that do not fit the existing dictionaries will be treated as missing. If a line has
fewer columns than expected, it will be padded with missing values. If a line has more columns than expected, extra
columns will be truncated. Lines will be skipped only if they cannot be parsed even with these modifications, such as
if a line has errors in its libsvm-formatted section.

# etl-hadoop.sh \

-input_dir data3_dir \

-header_input_dir etl_out \

-output_dir etl1_out \

-ignore_constant_columns \

-missing_value ? \

-mean_impute \

-max_bad_lines_per_mapper 10

The etl-hadoop.sh script can also pass the -words_columns flag with an accompanying column specification
argument. For each possible word, this parameter creates a notional column in the output .st file. The entry will be 1
if the word occurs in a row, and 0 if it does not. Unrecognized words in words columns do not result in bad lines and
are ignored. Because most rows don't contain any particular word, the columns are always made sparse. (That is,
there is one entry for each word that occurs; otherwise the column is not represented in the output.) For example:

# etl-hadoop.sh \

-input_dir data_dir \

-output_dir etl_out \

-words_columns 6 \

-rare_words_pct 10 \

-stop_words_pct 10

The -rare_words_pct and -stop_words_pct filter out rare and common words from the .st file. This filtering
does not change the number of notional columns, so multiple runs of etl-hadoop.sh with different filtering
percentages will yield output files where the column numbers are identical. Also, note that words that can be parsed
as numbers become the word "_NUMBER_".
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Note: Hadoop ETL queries the Hadoop runtime for the number of reducers that were used during a MapReduce
job. To make that query, the Hadoop runtime is passed the names of a "job counter group" and a "counter name."
While those names are unlikely to change across Hadoop releases, if they do, the new names can be passed on
the command line with a -D flag.

For the counter group, the new name can be passed as the value of

com.skytree.tools.etl.hadoop.jobCounterGroup

while the new counter name is the value of

com.skytree.tools.etl.hadoop.launchedReduces

You can use the help flag to learn all the options available for etl-hadoop.sh.

Note: Users running Cloudera (CDH) 4.x may encounter an error, "Found interface
org.apache.hadoop.mapreduce.TaskAttemptContext, but class was expected." If this happens, pass the
-cloudera flag to etl-hadoop.sh before the separator.

Note: Hadoop 2.x users may encounter an, "UnsupportedOperationException: This is supposed to be overridden
by subclasses," error. If this happens, pass the -hadoop2 flag to etl-hadoop.sh before the separator.

A Note Regarding Data Preparation

For cluster configurations with inconsistent mapred.reduce.tasks settings in the cluster nodes'
mapred-site.xml configuration files, an error of the following form may arise in the second MapReduce job
submitted by etl-hadoop.sh, named "EtlHadoop second-pass schema inference":

[INFO] Task Id : attempt_<attempt ID>, Status : FAILED on node <hostname>

java.lang.Throwable: Child Error

at org.apache.hadoop.mapred.TaskRunner.run(TaskRunner.java:275)

Caused by: java.io.IOException: Task process exit with nonzero status of 1.

at org.apache.hadoop.mapred.TaskRunner.run(TaskRunner.java:262)

[INFO] Job <job ID> failed with state FAILED due to: NA

[INFO] Counters: 7

[INFO] Job Counters

...

[INFO] Launched map tasks=4

[INFO] Data-local map tasks=4

[INFO] Aggregate execution time of reducers(ms)=0

[INFO] Failed map tasks=1

[ERROR] Hadoop job 'EtlHadoop second-pass schema inference' failed, exiting ...

In addition the first (successful) MapReduce job, "EtlHadoop first-pass schema inference", will report counters of the
form:

[INFO] Map-Reduce Framework

...

[INFO]   Reduce input records=<reduce input records>

[INFO]   Reduce input groups=<reduce input records>

...
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[INFO]   Map output records=<map input records>

...

where <reduce input records> and <map input records> are not equal.

If the above error is observed, the following flag should be passed to etl-hadoop.sh to ensure consistent
mapred.reduce.tasks setting for the job:

-Dmapred.reduce.tasks=<desired number of reducers>

Reusing Headers

The etl-hadoop script supports reusing headers that were computed from previous runs with the -header_input_
dir command. This allows future datasets to be converted using the same output format.

If you want to obtain exactly the same output format as the original dataset, then any command line options that
were specified in the original dataset must also be specified when using -header_input_dir.

# etl-hadoop.sh \

-input_dir data1_dir \

-input_dir data2_dir \

-output_dir etl_out \

-ignore_constant_columns \

-missing_value ? \

-mean_impute

# etl-hadoop.sh \

-input_dir data3_dir \

-header_input_dir etl_out \

-output_dir etl1_out \

-ignore_constant_columns \

-missing_value ? \

-mean_impute

Running Jobs on a YARN/Hadoop Cluster

Running a Skytree Server job on a YARN or Hadoop cluster is similar to running a distributed job. Review the
Distributed Module (page 173) section before continuing with this section.

There are several important differences between regular distributed jobs and those run on a YARN or Hadoop cluster:

1. Jobs (also referred to as "applications") are submitted to the YARN Resource Manager via the skytree-yarn
command. Jobs are submitted to Hadoop JobTracker’s scheduler via the hadoop command.

2. An output (job) directory on the cluster’s distributed file system must be specified (and cannot exist prior to job
submission). A log file named skytree-server.log will automatically be placed inside that job directory, and
the --log option is not available.

3. The user specifies the number of processes to run using a set of quorum conditions, not by specifying hostnames
with the --hosts option.
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Note: All input file (and directory) paths should be specified as absolute paths to a user-writable path on the
system’s distributed file system. For most Hadoop clusters, this is inside the user’s home directory in HDFS name
space (e.g., /user/<username>/). For MapR clusters, the MapR-FS filesystem is typically mounted at /mapr/,
and the user’s distributed home directory is at /mapr/<ClusterName>/user/<username>/ (via the NFS
Gateway service).

Note: Output files can be specified by file name only (without a full path), and will be placed in the job directory.

Note: A Skytree Server job on a Hadoop cluster runs one Skytree Server process in each reducer task of a
MapReduce job. If the nodes of the cluster are configured with a single reducer slot per node, each process will be
free to use all of its node’s compute resources. If the nodes are configured with multiple reducer slots, then users
must exercise care to consume only an appropriate share of the available resources.

Submitting Jobs

The process for submitting jobs varies based on whether you are using YARN or Hadoop. Refer to the following
sections:

• Submitting YARN Jobs (page 186)

• Submitting Hadoop Jobs (page 187)

Submitting YARN Jobs

YARN jobs (also referred to as "applications") are launched by submitting them to YARN's Resource Manager. The
Resource Manager allocates appropriate resources to the YARN job and can be tracked on the resource manager's
Web UI.

Use the skytree-yarn command to submit a job. Skytree Server ships with its own command, `skytree-yarn`,
which is a convenience wrapper over `yarn`. This sets up the required environment to launch a Skytree Server YARN
job correctly.

Note: The skytree-yarn command can only be used when submitting jobs. This command expects that the
yarn command is in the user's PATH. If it is not, it can be added as follows:
# export PATH=$PATH:<YARN installation path>/bin

A sample for submitting a YARN job is follows:

# skytree-yarn rdf \

--training_in datasets/income.data.st \

--training_labels_in datasets/income.data.labels \

--num_trees 10 \

--model_out model \

--processes 2 \

--memory 2048 \

--cores 2 \

--output job1
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or more generally:

# skytree-yarn {All skytree methods + parameters} \

--processes {# of skytree processes} \

--memory {Amount of Memory per process in MB} \

--cores {# of cores per process} \

--output {job output directory}

YARN Parameters

The YARN parameters include those that are also available with skytree-server. (See skytree-server
<method> --help for more information.) The following additional parameters are available for use with YARN only.

• --processes (Required): Any YARN job launched has to negotiate the amount of resources it needs to complete.
This value informs YARN how many different Skytree workers or threads need to be launched.

• --memory: YARN also needs to know the amount of memory for each worker/thread. The value here has to be
carefully considered. For best performance, specify the amount of memory per process as close to the actual
needed amount as possible. If too little is specified, the job may be killed. If too much is specified, resources may
be wasted, or the job may not be able to start.

• --cores: Each worker needs access the to cores to use for computation.

• --output: All jobs require an output directory (on HDFS). This directory should not exist before the job is started.
By default the skytree-server.log file is placed here.

• --queue: This allows you to specify that a skytree-yarn job must be run on a specific queue. If this is
specified, then a valid queue name is required, otherwise the job submission will fail. If --queue is not specified,
then the job is submitted to the default queue.

• --filter-stdout: A flag that specifies to filter stdout to display only the core execution log. A full log with the
name $script_name.<date>-<time>.log will be written to the current directory.

Important Notes Regarding Skytree YARN Jobs

• The user's home directory is assumed to be /user/{user.name}.

• All relative input files with relative paths are assumed to be under the user's home directory. So --training_in

datasets/data.st is assumed to be in /user/{user.name}/datasets/data.st.

• If the output path is relative, it is also assumed to be relative from the user's home directory. So --output=job1

will be in /user/{user.name}/job1.

• All relative output files are assumed to be under the output directory. So --model_out=model --output=job1

is assumed to be job1/model, and subsequently be in /user/{user.home}/job1/model.

• A job output directory should not exist before launch.

• All absolute paths are left as presented.

• The user has read permission on input files and write permission on output files/directories.

Submitting Hadoop Jobs

All jobs must be submitted to the Hadoop JobTracker for dispatch. The JobTracker determines, based on available
compute resources in the cluster, when, and where to launch Skytree Server processes.

Job submission commands are of the form:
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# hadoop com.skytree.SkytreeServer \

-Djob_dir=<output directory> \

-Doptions=<Skytree Server options> \

-Dquorum=<quorum conditions> \

[-Dmem_per_process=<reserved memory per process>]

Note: We assume that the hadoop command is in the user’s PATH. If not, it can be added by adding
# export PATH=$PATH:<Hadoop installation path>/bin

to the user’s $HOME/.bashrc file (or similar) or by replacing hadoop with the fully pathed command
<Hadoop installation path>/bin/hadoop

Note: We assume that <Skytree Server installation path>/lib/* is in the HADOOP_CLASSPATH
environment variable, either via the hadoop-env.sh file (see the "MapReduce Configuration" section in the
Skytree Server Installation Guide) or by setting it in the user’s $HOME/.bashrc file using
# export HADOOP_CLASSPATH=<Skytree Server installation path>/lib/*:$HADOOP_CLASSPATH

The following error may be reported if the HADOOP_CLASSPATH is not correctly set:
Error: Could not find or load main class com.skytree.SkytreeServer

Instead of setting the HADOOP_CLASSPATH environment variable, the hadoop portion of job submission
commands can be replaced with:
# hadoop jar <Skytree Server installation path>/lib/skytree-server-hadoop.jar

We now examine the options specified in the job submission command:

-Djob_dir=<output directory>

The user must specify a job directory that resides on the shared file system. The directory will be created before
the job submission and must not exist prior to submission.

The directory will be used for job coordination and must be available to all nodes running Skytree Server. If the
argument to a Skytree Server output file option (one ending in _out) is given without a path, it will be written to
this directory. The Skytree Server log file will be written to <output directory>/skytree-server.log.

-Doptions=<Skytree Server options>

The <Skytree Server options> are the same command line arguments that can be passed to Skytree Server
when running without a Hadoop MapReduce environment. For example, you can use the following command to
execute an RDF job outside the Hadoop cluster:

# skytree-server rdf \

--training_in income.train.st \

--training_labels_in income.train.labels \

--testing_in income.test.st \

--probabilities_out probs \

--num_trees 100

To submit the same job on a Hadoop cluster, run the following instead:

# hadoop com.skytree.SkytreeServer \

-Djob_dir=<output directory> \

-Doptions="rdf \

--training_in income.train.st \

--training_labels_in income.train.labels \
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--testing_in income.test.st \

--probabilities_out probs \

--num_trees 100" \

-Dquorum=<quorum conditions>

Note: The quotation marks surrounding the space-separated options are required.

Note: To run distributed jobs, the --hosts option cannot be used. Instead, the desired number of processes is
specified by the -Dquorum option (see below).

Note: On MapR Hadoop distributions, all input file paths without absolute paths, including those specified within
an input file (--input_file), are interpreted relative to the directory from which the job submission command is
executed. On all other Hadoop distributions, all input file paths must be given with absolute paths.

-Dquorum=<quorum conditions>

The quorum conditions specify the necessary compute resources to be allocated to a job before it begins. More
specifically, they give the desired number of processes paired with the acceptable amount of time to wait for the
scheduler to allocate that number of processes. The format for the argument is

<num processes 1>,<time 1>;<num processes 2>,<time 2>,...

and is interpreted as to start the job if:

▪ <num processes 1> are allocated to the job within <time 1>;

▪ <num processes 2> are allocated to the job within <time 2>;

▪ ...

Recall that the number of Skytree Server processes corresponds to the number of reducers allocated to the job.
The <time> arguments must be specified with a unit of d (days), h (hours), m (minutes) or s (seconds). E.g., 5m is
interpreted as 5 minutes.

The quorum conditions must be specified with decreasing numbers of processes and increasing time periods. If
the final condition is not satisfied, the job is killed.

For example, suppose five processes are desired for a particular job, but only two are currently available. If the job
is submitted with -Dquorum="5,30m" it will wait 30 minutes to obtain five processes, and then the job will be
killed. Instead, it is preferable to specify the quorum condition as -Dquorum="5,5m;4,10m;3,15m;1,2h", which
will start the job if

▪ 5 processes are allocated to the job within 5 minutes; or

▪ 4 processes are allocated to the job within 10 minutes; or

▪ 3 processes are allocated to the job within 15 minutes; or

▪ 1 process is allocated to the job within 2 hours; or

▪ stop trying after 2 hours.
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Warning: If a job is killed due to a failure to find a quorum of processes, it is sometimes difficult to determine that
the failed quorum condition was the root cause. In these cases it is useful to check the JobTracker’s logs for
errors reported by the reducers. For more information on how to check reducer log, refer to Monitoring Jobs (page
190).

Note that multiple processes can only be specified for the algorithms supported by the Distributed module. For
further information regarding their distributed usage, refer to Distributed Module (page 173).

-Dmem_per_process=<reserved memory per process>

This option specifies the reserved amount of virtual memory (in MB) for each Skytree Server process, which
determines the number of MapReduce slots needed. Remaining slots on a node may be shared with other
processes (same or different job). To reserve 4000 MB per process, for example, specify -Dmem_per_
process=4000.

Note: This option is required if the Capacity Scheduler is enabled and is disallowed otherwise. For information on
how to configure Hadoop schedulers, refer to the "MapReduce Configuration" section in the Skytree Server
Installation Guide.

Warning: For best performance when running under the Capacity Scheduler, all users should specify the reserved
amount of memory per process as close to the actually needed amount as possible. If too little is specified, the
job may be killed. If too much is specified, resources may be wasted or the job may not be able to start. We
recommend consulting the memory usage reports by Skytree Server and/or the Hadoop JobTracker.

Warning: For best performance when running under the Capacity Scheduler, jobs that reserve only a small
amount of available memory may also need to be run with a small number of threads via the --threads option
within the -Doptions argument. Otherwise, high CPU loads may result and impede overall job throughput.

Note: A temporary directory output directory will be created in the user’s home directory on the Hadoop
distributed storage. The directory name is of the form SkytreeServer-<random characters> and will be
removed upon job completion. In some circumstances, the directory will not be deleted, and the user must
manually delete the directory when it is clear that the job has terminated.

Monitoring Jobs

Monitoring a YARN Job

After a YARN job is submitted, its health can be monitored via the Resource Manager. The Resource Manager UI is
global and depends on your YARN cluster configuration.

Identifying Your YARN Application

The YARN application ID is printed out immediately after the job is successfully submitted. Below is an example of
the log:

2014-04-29 20:34:20,568

- INFO [pool-6-thread-1:n.s.a.y.a.SkytreeYarnClient$ProgressLogger@445]
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- Skytree Application Launched with Id: application_1398210192725_0042

In the above example, the Skytree YARN application ID is application_1398210192725_0042.

YARN Logs

Each YARN job also writes the logs to the job's output directory.

Monitoring a Hadoop Job

Once a job is submitted, information regarding the job is written to the screen. The information includes:

JobTracker URL for the job

Important information regarding the execution of the job’s processes is written to the logs available at this URL.
The URL is given in a message similar to:

skytree.SkytreeJobRunner: Job submitted. The tracking URL is <URL>.

When viewing the job progress, please note that the progress of mappers is not relevant to the execution of the
job (as no work is performed during the map phase). In addition, because Skytree Server processes are not
traditional reducers, the progress of reducers is not an indication of progress in the Skytree job. Both progress
reports should be ignored.

The syslogs of the reducers contain valuable information regarding the execution of each Skytree Server process.
They should be consulted, particularly when a job failure occurs. To see the syslog of a reducer, navigate to the
job’s tracking URL in your browser. Then click on a number in the Reduce row of the first table. Next, click on a
task in the Task ID column. On the next page, under Task logs, click All.

Note: A complete list of jobs managed by the JobTracker can be seen using the JobTracker’s Web interface
(usually at http://<JobTracker hostname>:50030).

Hadoop job ID

JobTracker assigns a unique identifier to each submitted job. The job ID is reported in a message similar to:

mapred.JobClient: Running job: <job ID>

This job ID can be used to track the job using Hadoop’s tools and then kill the job as described in Killing Jobs
(page 192).

Skytree Server log

Skytree Server always writes a log file when running in a Hadoop environment. For convenience, the log messages
are repeated to screen by the job submission process.

Note: Occasionally, and particularly for very short jobs, no Skytree Server output is written to screen. In these
cases, please consult the Skytree Server log file instead.

Note: The time stamps reported on screen are those of the report time and may lag the actual execution of the
job. More accurate times are reported in the Skytree Server log file.

Hadoop counters
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For ensemble methods, collaborative filtering and nearest-neighbors methods, and Hadoop counters, in addition
to those set by Hadoop itself, will be incremented during execution. These counters include information regarding
the progress of tuning iterations and/or the completion of various tasks in the algorithms. The counters appear in
a “Skytree Server” group.

Killing Jobs

Killing a YARN Job

Terminating the job submission process (e.g., via Ctrl+c) does not kill a job (or application) that has already been
submitted to Resource Manager. You must identify the application ID to kill a submitted job. The syntax for this is as
follows:

# yarn application -kill <application_id>

This ID is printed out when the Skytree YARN application gets access to it via YARN. Below is an example of the log:

2014-04-29 20:34:20,568

- INFO [pool-6-thread-1:n.s.a.y.a.SkytreeYarnClient$ProgressLogger@445]

- Skytree Application Launched with Id: application_1398210192725_0042

2014-04-29 20:34:20,569

- INFO [pool-6-thread-1:n.s.a.y.a.SkytreeYarnClient$ProgressLogger@446]

- Application can be killed using command

'yarn application -kill application_1398210192725_0042'

The application ID used to kill the above referenced job is: application_1398210192725_0042. The example
below shows how to kill this job:

# yarn application -kill application_1398210192725_0042

Killing a Hadoop Job

Terminating the job submission process (e.g., via Ctrl+C) does not kill a job that has already been submitted to
JobTracker. To kill a submitted job, identify the job ID (see Hadoop job ID (page 191)), and then issue the following
command.

# hadoop job -kill <job ID>

Using Kerberos-Enabled Clusters

Users must generate forwardable Kerberos ticket-granting tickets (TGTs). These can be generated using "kinit -f"
(or simply kinit if the administrator has configured TGTs to be forwardable by default).

Users can run "klist -f" to determine if a TGT is forwardable. An F flag in the list of flags indicates that a TGT is
forwardable. For example:

Ticket cache: FILE:/tmp/krb5cc_1000

Default principal: skytree@SKYTREE

Valid starting     Expires            Service principal

01/01/14 00:00:00  01/02/14 00:00:00  krbtgt/SKYTREE@SKYTREE

renew until 01/08/14 00:00:00, Flags: FRI
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TGTs will be read only when the job is submitted. Because some processes can be time consuming, the ticket must be
renewable throughout the duration of job execution. Users should run "kinit -f" before submitting a job to ensure
maximum TGT lifetime.

Troubleshooting YARN

Below are common errors that you might encounter when using Skytree Server with YARN.

Timeout Logs

A timeout log looks similar to the following:

2014-04-29T20:39:21,245Z WARN n.s.a.y.a.SkytreeYarnClient [ip-172-31-36-199.us-

west-2.compute.internal] [ServiceDelegate

SkytreeYarnClient$SkytreeEventHandler:launchTimeout(SkytreeYarnClient.java:409) -

Requested 4 containers for runnable workers, only got 0 after 42484 ms

If you encounter this log, this means that significant time has passed, and Skytree Server has not been allocated
enough resource. By default, the Skytree Server application will wait 'forever' for the resources. If that is not the correct
behavior, the property can be changed in using the following configuration:

# skytree.application.max.timeout.millis=<num>

Skytree Server will automatically terminate after the specified number of milliseconds has passed

Not Enough Memory Allocated

Skytree Server's YARN application relies on the user to reserve the proper amount of memory in order for the job to
run correctly. If not enough memory is available to the Skytree user, (i.e. Skytree Server uses more than the reserved
memory), the application can be killed by YARN. In this case, a log similar to the following can be seen:

2014-04-29T20:34:39,922Z WARN o.a.t.i.a.RunningContainers [ip-172-31-36-199.us-

west-2.compute.internal] [ServiceDelegate] RunningContainers:handleCompleted

(RunningContainers.java:318) - Container container_1398210192725_0042_01_000003

exited abnormally with state COMPLETE, exit code 143

followed by

2014-04-29T20:34:41,109Z ERROR n.s.a.y.c.AbstractService [ip-172-31-36-199.us-west-

2.compute.internal] [pool-12-thread-1] AbstractService:error

(AbstractService.java:171) - coordinator 7e4fea24-86af-4139-83cc-63073a763ea7-0:

ip-172-31-36-198.us-west-2.compute.internal:60017 failed to respond. Failing

If you encounter this log, we recommend allocating more memory to workers (using the --mem option).

Java Heap Space and GC Overhead Limit Exceeded

If you encounter the following errors,

Error: Java heap space

Error: GC overhead limit exceeded

verify that you included a delimiter in the etl-hadoop.sh configuration. If the data is tab delimited, for example, and
a -delimiter=TAB is not specified, then etl-hadoop.sh will consider the data to be a single categorical column
and will attempt to construct a dictionary the size of the entire dataset. This leads to memory over consumption.
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Chapter 10 Streaming Module

The Skytree Server Streaming module allows Skytree Server to listen on a TCP port for incoming test points and reply
with predicted outcomes. Both the test points and replies are given in JSON (JavaScript Object Notation) format.
Currently, the gbt, gbtr, rdf, and rdfr modules are supported.

Running the Streaming Server

Executing Skytree Server in streaming mode requires that the --port option specifies the port on which to listen for
test data. In addition, --model_in must specify a previously trained model to used to predict outcomes for streamed
test points.

A third option, --batch_size, may also be provided to denote the number of streamed test points to collect before
testing with the model. This aggregation of test points may decrease testing time by using the model simultaneously
for multiple test points, however this comes at the expense of increasing the turnaround time for a single point (the
latency of the response) as a streamed point will not be tested until enough points are received by the server.

Note: The specified port must be greater than or equal to 1024.

Note: To reduce memory usage, the model file may be queried from disk during prediction.

Streaming Client

The streaming client can communicate with the server via TCP socket on the port specified to the server (via --port).
Replies will be returned using the same connection. The client should send the test points for which predictions are
sought. The format of these points is described in the following section.

JSON Data Format

All input/output is performed via JSON formatted messages. These formats are described in the sections that follow.

Input Data

The format of each input test point message is:
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{

"queries":

{

"ids":[int],

"reals":[number],

"ints":[int]

}

}

The ids will be used in the responses by the server to identify the test points’ predictions. The reals and ints

correspond to test data transformed as described in Data Preparation (page 9) for the model in use.

Note that multiple points may be sent simultaneously by providing an array of point indices in the ids field. In that
case, the continuous and integral values of the points will be packed into the reals and ints fields consecutively.
For example, if point 1 has integers [1,2,3] and point 2 has reals [4,5,6] the ints field should be given as
[1,2,3,4,5,6].

Output Data

The output JSON object will contain the prediction(s) for each point received by the server. The classifier reply format
is:

{

"reply":

{

"id":[int],

"label":[int],

"probability":[number]

}

}

The id corresponds to the ids sent to the server in the input message. The label and probability fields provide
the predicted label for the test point and the probability of the point being in the majority class.

The regressor reply format is:

{

"reply":

{

"id":[int],

"target":[number]

}

}

The id once again corresponds to a test points ids field while the target provides the predicted value of the quantity
of interest.

Example

We begin by first training a GBT model and saving it to model.stream:

# skytree-server gbt \

--training_in income.data.st \

196 | Skytree Server User Guide Confidential Chapter 10 Streaming Module



--training_labels_in income.data.labels \

--num_trees 20 \

--model_out model.stream

The server can then be started using:

# skytree-server gbt \

--model_in model.stream \

--port 10000

The income.test.json file contains the data of income.test.st formatted in JSON as described above. That
data can be simply sent to the server using the UNIX netcat utility. To do so, in a new terminal, run:

# cat income.test.json | nc localhost 10000

Replies will be written to the terminal in the form:

{"reply":{"id":0,"label":-1,"probability":0.0497022}}

{"reply":{"id":1,"label":-1,"probability":0.320625}}

{"reply":{"id":2,"label":-1,"probability":0.341991}}

{"reply":{"id":3,"label":1,"probability":0.788279}}

{"reply":{"id":4,"label":-1,"probability":0.051463}}

...
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Chapter 11 Advanced Usage

The Advanced Usage section provides best practices for obtaining best results with Skytree Server and is intended for
advanced users.

Performance Tuning

Skytree Server is designed to optimally utilize system resources by default. Still, for a given machine learning task, the
user has several options that can affect runtime and/or memory usage.

Number of Processes

For most methods in Skytree Server, it is best to launch one process per physical server to fully benefit from
multithreading on shared memory. For multi-node configurations, one Skytree Server process per compute node
should be launched, such that inter-node communication between processes is minimized.

However, for compute servers with non-uniform memory access (NUMA), it might make sense for certain algorithms
to launch one (or more) Skytree Server process(es) per physical multi-core processor to maximize the memory locality
(assuming affinity to a memory channel) and hence the modeling throughput. For example, for a dual-socket Xeon
server with two 8-core processors, there are 16 physical cores and 32 hyperthreading threads available. In that case,
it might make sense to launch two Skytree Server processes per node with each 16 threads.

Conventional distributed job launches 2 processes (one per node):

# skytree-server gbt \

--training_in train.st \

--training_labels_in labels \

--num_trees 100 \

--model_out model \

--ensemble_size 100 \

--hosts node01,node02 \

--threads 32

NUMA-optimized distributed job launches 4 processes (two per node):

# skytree-server gbt \

--training_in train.st \

--training_labels_in labels \

--num_trees 100 \
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--model_out model \

--ensemble_size 100 \

--hosts node01,node01,node02,node02 \

--threads 16

The runtime for the NUMA-optimized job can be slightly less, depending on the problem and the compute hardware.

Note: When running on Hadoop, the NUMA-optimized mode would require running the Capacity Scheduler and
reserving less than (or equal to) half the available memory per process, such that two processes can run per
node. Refer to Data Preparation (page 181) in the YARN/Hadoop section for more information.

Number of Threads per Process

The number of threads should generally be left at the default value, which is the maximum number of threads the
server can support without overloading the system. If other compute-intense processes are running on the same
server (e.g., in an interactive execution mode without a scheduling system), the user might want to specify fewer
threads for each process. If this is a common problem, then the system administrator can set a global default and/or
limit on the number of threads as described in the Skytree Server Installation Guide.

Number of Cached Trees for Ensemble Members

For ensemble methods, the --num_cached_trees option can be used to control the memory usage. Higher values
will lead to higher memory usage by Skytree Server. The default value for the number of cached trees (or ensemble
members) is the number of threads available. Reduce this value if memory usage is too high.

Validate Header

The validate header step can be used to tweak the header generated by the generate header step. Once the changes are
made to the original header, a new header can be generated based on the changes the user desires. For example, if
you accidentally omit a categorical column header, then changing the header and running validate-header.sh

may be faster than re-running generate-header.sh.

The reason this step might be needed is that the header generation process creates a header assuming that all
numeric columns (identified as integer or floating) are of continuous nature. In other words, numeric columns
are not categorical or discrete. This is not always true. For example, sometimes in a database a customer’s state of
residence may be represented as a numeric value from 1 to 50. The header generation process will assume this
column to be continuous, but that assumption is not valid. The header generation step has not created dictionaries
for these columns and has labeled them as not categorical. This needs to be changed, and the
validate-header.sh utility can be used to do that.

The Process

Tweaking the header is a 2-step process:

1. Edit original header and change categorical=false to categorical=true for all columns for which
dictionaries are to be generated.

2. Run validate-header.sh with appropriate arguments to generate a new header.
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A Simple Example

The following example illustrates the steps needed. Consider a header that contains the following:

# column number: 1 name: age

integer:categorical=false:min=17.0:max=90.0:...

# column number: 2 name: workclass

text:categorical=true;dictionary=...

# column number: 3 name: finalweight

integer:categorical=false:min=12285.0:max=1490400.0:...

# column number: 4 name: education

text:categorical=true;dictionary=...

# column number: 5 name: education-num

integer:categorical=false:min=1.0:max=16.0:

mean=10.078088530363212:sigma=2.5709464361754146

...

and was generated by the following command:

# generate-header.sh \

-file income.data \

-file income.test \

-header_out income.header \

-ignore_lines 1 \

-ignore_lines 1 \

-label_index 15 \

-missing_value ?

Assume that we know that column 5 from the header above is actually categorical and not a continuous value and
that we want to generate a dictionary for it. We edit the header to indicate that column 5 is categorical by changing
categorical=false to categorical=true:

integer:categorical=true:min=1.0:max=16.0:mean=10.078088530363212:sigma=2.5709464361754146

Then we run the validate-header.sh script as follows:

# validate-header.sh \

-file income.data \

-file income.test \

-header_in income.header \

-header_out income.header.validated \

-ignore_lines 1 \

-ignore_lines 1 \

-missing_value ?

to give

integer:categorical=true;dictionary="1","10","11","12","13","14","15",

"16","2","3","4","5","6","7","8","9"

Notice the only difference in the call to validate-header.sh from the call to generate-header.sh is the
-header_in argument. Its value should be the same as the file name of the header generated by
generate-header.sh. The updated header will be found in income.header.validated.
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Important Notes

1. This process will even work for floating-point values, but keep in mind that the dictionaries for floating-point
numbers can get very large, and these data types may not be the right choice for categorical variables.

2. The above process can be used for all numeric columns that are categorical with one run of
validate-header.sh. (i.e., There is no need to do multiple runs for each column.)

3. It is highly recommended that you inspect the newly generated header.
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Appendix A Troubleshooting

The troubleshooting section attempts to guide users when troubleshooting Skytree Server Machine Learning jobs. It
gives an overview over general tips that can help improve productivity and apply to most (if not all) modules in
Skytree Server.

For installation and administration details, please refer to the Skytree Server Installation Guide. Contact your system
administrator for help installing and configuring Skytree Server.

Contact Skytree support (support@skytree.net) if you encounter problems that you cannot resolve.

System Status and Network Speed

The log produced by Skytree Server (or by the status module) should be the first thing to examine when
troubleshooting any performance issues.

# skytree-server status --hosts node01,node02,node03

-------------------------------------------------------------------------------------------

| | Avail. | Avail. | System | Total | Free | Network | Network |

| Hostname | Cores | Threads | Load (%) | Mem. (GB) | Mem. (GB) | Lat. (us) | B/W (MB/s) |

-------------------------------------------------------------------------------------------

| node01 | 12 | 24 | 1.12 | 47.15 | 41.82 | origin | origin |

| node02 | 12 | 24 | 85.42 | 47.15 | 3.38 | 8.09 | 115.95 |

| node03 | 12 | 24 | 5.82 | 47.15 | 42.18 | 128.09 | 12.28 |

-------------------------------------------------------------------------------------------

In the example log above, the compute node node02 was loaded at 85% and the free memory was very low,
suggesting that another process might using system resources. Also, the network connection between node01 and
node03 was slow (high latency and low bandwidth), indicating potential configuration problems.

Loglevels

By default, Skytree Server runs in the default loglevel. For more verbosity during troubleshooting, we advise to run
with --loglevel=verbose.

Data Sanity and Ingestion Speed

By default, many methods in Skytree Server support a fast (unchecked) file read for highest file I/O speed during data
ingestion via the --fast_read option. This is safe if the dataset was created (and sanitized) with the Skytree Server
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data preparation tools. We suggest you turn off the fast read option (--fast_read=off) to perform a thorough
check on datasets not created with the Skytree Server data preparation tools to avoid problems that can be
potentially hard to detect (e.g., invalid characters interpreted as numbers).

System Load and Memory Usage Watchdog

By default, Skytree Server monitors system resources with a system load and memory usage watchdog service
(--watchdog=on). Both a low memory threshold (--watchdog_low_memory_threshold=0.05) and a high system
load threshold (--watchdog_high_load_threshold=1.5) can be specified. The default values are fine for most
purposes.

High System Load

If the system load is higher than the system load threshold, the log file can contain warning messages generated by
the watchdog service as follows:

12:37:42 [INFO] Progress: 10%

12:37:47 [WARNING] System load is high! System Load: 178.6 %

12:37:52 [WARNING] System load is high! System Load: 188.7 %

12:37:52 [INFO] Progress: 20%

12:37:57 [WARNING] System load is high! System Load: 198.9 %

12:38:00 [INFO] Progress: 30%

12:38:02 [WARNING] System load is high! System Load: 208.7 %

12:38:02 [WARNING] Try running ps or top in a terminal session to check

for other processes competing for resources on this machine.

On Hadoop systems, this might be a consequence of running multiple jobs on the same node (possible with the
Capacity Scheduler), without reducing the number of threads per process (--threads). Consider reducing the
number of threads per process. On non-Hadoop systems, consider inspecting the compute node for other compute-
intense running processes with top (and pressing p to sort by processor usage).

High Memory Usage

If the system’s available memory is less than what Skytree Server requires to complete the desired machine learning
task, the log file can contain warning messages generated by the watchdog service as follows:

13:29:34 [INFO] ===================================================

13:29:34 [INFO] Running tuning parameter combination 1 of 125.

13:29:34 [INFO] ===================================================

13:29:50 [WARNING] Memory is running low! Free Memory: 2.254 GB

13:29:52 [INFO] Building 10000 trees for tuning.

13:29:55 [WARNING] Memory is running low! Free Memory: 1.631 GB

13:30:00 [WARNING] Memory is running low! Free Memory: 0.5969 GB

13:30:05 [WARNING] Memory is running low! Free Memory: 0.5976 GB

terminate called after throwing an instance of ’std::bad_alloc’

what(): std::bad_alloc

The above job was killed by the operating system due to insufficient available system memory.
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Controlling Memory Usage without Affecting Results

For ensemble methods, the --num_cached_trees option can be used to control the memory usage without
affecting results; refer to Number of Cached Trees for Ensemble Members (page 200).

For nearest neighbors (the nnplus and wnnc modules), the --memory_usage option can be used to control the
(relative) memory usage without affecting results, refer to Controlling Memory Usage (page 34). Note that this option
must be specified in addition to -Dmem_per_process for certain Hadoop environments (and both values should be
in accordance with each other). See Submitting Hadoop Jobs (page 187) for more details.

For Random Decision Forests (the rdf module), memory footprint can be reduced when no sampling is done:
--sampling_with_replacement=off --sampling_ratio=1.0.
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Appendix B Command Reference

This appendix describes the commands that are available for use with Skytree Server based on the current module. At
any time, you can type --help at the command prompt for a list of options available in the current module. For
example:

# skytree-server nnplus --help

Note: When enabling binary features (i.e., turning a feature on), the keywords on, yes, true, and 1 all have the
same effect. Similarly, off, no, false, and 0 have the same effect when disabling a feature.

Refer to the following sections for more information:

• AutoModel Options (page 208)

• Collaborative Filtering Options (page 215)

• Convert Data Options (page 223)

• Database Connection Options (page 227)

• Generalized Linear Model Classification Options (page 229)

• Generalized Linear Model Regression Options (page 236)

• Generate Header Options (page 243)

• Gradient Boosted Trees Options (page 247)

• Gradient Boosted Trees Regression Options (page 259)

• Hadoop Data Preparation Options (page 271)

• Kernel Density Estimation Options (page 275)

• k-means Options (page 277)

• Linear Regression Options (page 282)

• Logistic Regression Options (page 286)

• Network Tester Options (page 288)

• Nearest Neighbors Options (page 289)

• Nearest Neighbors Classification Options (page 291)
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• Nearest Neighbors Plus Options (page 299)

• Random Decision Forests Options (page 302)

• Random Decision Forests Regression Options (page 312)

• Recommendation Scoring Options (page 320)

• Scoring Options (page 321)

• Singular Value Decomposition Options (page 325)

• Status Options (page 327)

• SVM Options (page 328)

• Time Series Options (page 335)

• Two-Point Correlation Options (page 339)

• Weighted Nearest Neighbors Classification Options (page 340)

• What-If Options (page 349)

AutoModel Options

The following tables show the options available in the automodel module.

Command Description

--classweight

Specify a value for classweights.When used, youmust repeat the
--classweightoption for each class in--training_labels_in.
The valuesare used to artificially inflate the impact of the corresponding class.
If omitted, classweights of 1 are assumed for every class.

Usage:
--training_labels_in sdss.train.labels \
--classweight 10 \
--classweight 1

--model_in

Optionally specify a file fromwhich to load themodel.

Usage:
--model_in model

--smart_search_restart_in

Optionally specify to load data from a file to continue smart search from saved
data.

Usage:
--smart_search_iterations 10 \
--smart_search_restart_in income.restart

--testing_in

Optionally specify a file containing the testing data.

Usage:
--testing_in sdss_test.st

Table 3: AutoModel Input Data Options
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Command Description

--training_in

Required. Specify the file containing the training data.

Usage:
--training_in sdss.train.st

--training_labels_in

Required for classification problems. Specify the file containing the class
labels of the training data.

Usage:
--training_labels_in sdss.train.labels

--training_point_weights_
in

Optionally specify a file containing the point weights (for training amodel) for
each point in--training_in. Bydefault, each training point gets a point
weight of 1.

Usage:
--training_point_weights_in income.weights

--training_score_weights_
in

When evaluating amodel, optionally specify a file containing the score
weights for each point in--training_in. Bydefault, each point in
--training_ingets a score weight of 1.--training_score_
weights_inwill only be used if--tuning_in is not provided and you
use a holdout from the--training_in for tuning. Specify--tuning_
score_weights_in to tune on--tuning_inwith score weights.

Usage:
--training_score_weights_in income.weights

--training_targets_in

Required for regression problems. Specify the file containing the targets of
the training data.

Usage:
--training_targets_in kddcup.train.targets

--yield_values_in

Optionally specify the file used to calculate yield valuesduring tuning. This
must be the same length aseither the training or tuning vector, depending on
whether you are using holdouts or a tuning table.

Note that if--testing_objective=yield is specified, then this option
is required, and its value will be used to determine the best model.

Usage:
--yield_values_in income.yield.st

Table 3: AutoModel Input Data Options (continued)

Command Description

--holdout_ratio

Optionally specify the fraction of the table to be held out for tuning

Usage:
--holdout_ratio 0.2

Table 4: AutoModel Model Validation Options
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Command Description

--holdout_seed

Optionally specify the holdout sampling random number seed. This value also
servesas the seed for --num_folds. If omitted, a time-based seed will be
used.

Usage:
--holdout_seed 2

--num_folds

Optionally specify the number of folds for k-fold cross-validation. If
--holdout_ratio is also specified, thenMonte Carlo cross-validation
(with randomlydrawn holdout sets) is instead performedwith the specified
number of restarts.

Usage:
--num_folds 10

--smart_search_iterations

Optionally specify the number of search rounds to try for tuning. This value
must be greater than 0 and defaults to 100.

Usage:
--smart_search_iterations 500

--tuning_in

Optionally specify a file containing the tuning data. Cannot be provided
together with--num_foldsor --holdout_ratio. If specified, then
--tuning_labels_inmust also be specified.

Usage:
--tuning_in sdss.tune.st
--tuning_labels_in sdss.tune.labels

--tuning_labels_in

If--tuning_in is specified for a classification problem, then also specify a
file containing the labels of the tuning data.

Usage:
--tuning_in sdss.tune.st
--tuning_labels_in sdss.tune.labels

--tuning_models_out

File prefix for storage of all tuningmodels. Used only in conjunction with
--tuning_in. Note that this generatesa singlemodel file storing all of the
trees tuned over rather than generating separate lists. To limit the number of
treeswhen using thismodel, specify the--num_treesoption when
loading thismodel.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels \
--tuning_models_out sdss.tune.models

--tuning_results_out

Optionally specify a file to store all tuning results. The output format is JSON.

Usage:
--tuning_results_out income.tune.results

Table 4: AutoModel Model Validation Options (continued)
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Command Description

--tuning_score_weights_in

Optionally specify a file containing the score weights for each of the tuning
points. Bydefault, each tuning point gets a weight of 1. Use this option with
--tuning_in to tune with score weights.

Usage:
--tuning_score_weights_in income.tune.weights

--tuning_targets_in

Specify an file containing the targets of the tuning data. Required for
regression problems if--tuning_in is provided.

Usage:
--tuning_in income.tune.st \
--tuning_targets_in income.tune.targets

Table 4: AutoModel Model Validation Options (continued)

Command Description

--labels_out

Optionally specify a file to store computed labels.

Usage:
--labels_out results

--model_out

Specify a file to store the trainedmodel. This is required if you are generating
a classificationmodel rather than performing testing.

Usage:
--model_out sdss.lsvm.model.0.1

--output_with_ids

If enabled, the per-point output for --labels_out,
--probabilities_out, and--test_point_variable_
importances_outwill be prepended with the input file's "id" meta field
followed bya comma. For example, if the original output is "a,b,c" then the
new output would be "ID,a,b,c" where "ID" is an integer (1, -1). If an
"id" meta field is not available in the input, then "0" is set as the input "id"
field (for example, "0,a,b,c").

This option is disabled bydefault.

Usage:
--output_with_ids on

--partial_dependencies_out

Specify the file to store the partial dependenciesof the relevant features
and/or feature pairs in JSON format. These can be used to generate partial
dependence plots.

Usage:
--partial_dependencies_out dependencies.json

--pmml_out

Specify the file name to use when exportingmodels to PMML format.

Usage:
--pmml_out income.pmml

Table 5: AutoModel Output Data Options
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Command Description

--probabilities_out

Optionally specify a file to store computed probabilities.

Usage:
--probabilities_out sdss.test.probabilities

--smart_search_restart_out

Optionally specify to save smart search data to a file. This file can then be
specified when running additional smart search iterations.

Usage:
--smart_search_iterations 10 \
--smart_search_restart_out income.data.restart

--targets_out

Optionally specify a file to store computed targets. Used onlywith regression
problems.

Usage:
--targets_out targets.gbtr

--variable_importances_out

Optionally specify a file to store intrinsic variable importances. This output file
includesa single column. The first row is the importancesof the first column
variable in the--training_in .st file, the second row is the importance of
the second column, and so on. Requires--training_inand one of
--testing_inor --model_out.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--variable_importances_out variable_importances.out

Table 5: AutoModel Output Data Options (continued)

Command Description

--classification_objective

Optionally specify the objective for classification threshold tuning. Specify
either fscore (default) or accuracy.

Usage:
--classification_objective accuracy

--compression

Compression for data. Reduces computational resource requirements.

Note: Unlike other commands, the= symbol ismandatorywhen specifying
this option.

Usage:
--compression=off

--k_for_precision

Optionally specify kasa value between 0 and 1 for precision at the top
100k-th percentile. k should be greater than 0 and less than 1. kdefaults to
0.1.

Usage:
--k_for_precision 0.2

Table 6: Non-tunable AutoModel Options
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Command Description

--limit_parameters

Restricts the parameter space in order to reduce the training time. This
option is enabled bydefault.

Usage:
--limit_parameters off

--smart_search_seed

Optionally specify the search seed. If omitted, a time-based seed will be used.

Usage:
--smart_search_seed 82427

--testing_objective

Optionally specify the objective for selecting the test model from a set of tuned
models.

Classification options:

• gini (default)

• fscore

• accuracy

• capture_dev

• precision_at_k

• yield

Note that ifyield is specified, then--yield_values_inmust also be
specified.

Regression options:

• mean_absolute_error (default)

• mean_squared_error

• coeff_determination

• normalized_gini

Usage:
--testing_objective capture_dev

Table 6: Non-tunable AutoModel Options (continued)

Command Description

--fast_read

If set, disable verbose input checks for faster file reads. This option defaults to
off.

Usage:
--fast_read on

Table 7: General AutoModel Options
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Command Description

--hosts

Comma-separated list of hosts on which to run the distributed version of
Skytree Server.

Usage:
--hosts localhost,127.0.0.1

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--memory

Specifies the amount of memoryallocated for Skytree Server computation on
each host.When training, testing, or tuning via grid-search, if Skytree Server
cannot operate within the given amount of memory, it failswith an error
message indicating the amount of memory required for computation..

Usage:
--memory 10240

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_
hostoption is not provided, then Skytree Server will perform a single
processon each host. If--procs_per_host is provided without
--hosts, then the specified number of processeswill be used on
localhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

--threads

Optionally specify the number of per-process threads. For single host
execution, the default number of threads is set to themaximum available on
the host. In distributedmode, the number of threadsavailable to each host is
the smallest maximum available number of threadsamong the hosts. For
example, if--hosts=host1,host2 is specified and hosts "host1" and
"host2" have, respectively, 4 and 8 threadsavailable, 4 threadswill be used
for each process.

Usage:
--threads 16

--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that
this is enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the
specified value. This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

Table 7: General AutoModel Options (continued)
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Command Description

--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than
the specified fraction. This value defaults to0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 7: General AutoModel Options (continued)

Collaborative Filtering Options

The following tables show the options available in the cf module.

Command Description

--item_features_in

Optionally specify a file with item features intended to improve recommendation
accuracy. This file has the same format as the user item file except that the first column
is the indexof the feature.

Usage:
--item_features_in item_features.st

--item_features_value_in

Optionally specify a file with the value of item features intended to improve
recommendation accuracy. This has the same format as the--training_
ratings_in file. This option is used with--alpha. If--alpha=1 is specified and
this option is not, then item featureswill be interpreted asunary.

Usage:
--alpha 1 \
--item_features_in item_features.st \
--item_features_value_in item_features.value

--model_in

Optionally specify a file fromwhich to load themodel.

Usage:
--model_in item.model

--testing_candidates_in

Optionally specify a file containing the candidate item data for testing.

Usage:
--testing_candidates_in user_item.candidate.test

--testing_in

Optionally specify a file containing the testing data.

Usage:
--testing_in user_item.ratings.st

--testing_ratings_in

Optionally specify a file containing the ratings for the new users.

Usage:
--testing_ratings_in user_item.ratings.ratings

Table 8: CF Input Data Options
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Command Description

--training_in

REQUIRED. Specify the file containing the training data.

Usage:
--training_in user_item.st

--training_ratings_in

Specify the file containing the class labels of the training data. This option is required if
--unary=off.

Usage:
--training_ratings_in user_item.ratings

--users_in

Optionally specify a file with user IDs for which to give recommendations. If omitted,
use all user IDs found in the training data.

Usage:
--users_in sdss.users

Table 8: CF Input Data Options (continued)

Command Description

--holdout_ratio

Optionally specify the fraction of the table to be held out for tuning.

Usage:
--holdout_ratio 0.2

--holdout_seed

Optionally specify the holdout sampling random number seed. This value also serves
as the seed for --num_folds. If omitted, a time-based seed will be used.

Usage:
--holdout_seed 2

--num_folds

Optionally specify the number of folds for k-fold cross-validation. If--holdout_
ratio is also specified, thenMonte Carlo cross-validation (with randomlydrawn
holdout sets) is instead performedwith the specified number of restarts.

Usage:
--num_folds 5

--tuning_in

Optionally specify a file containing the tuning data. Cannot be provided together with
--num_foldsor --holdout_ratio. If this is provided, then--tuning_
ratings_in is required.

Usage:
--tuning_in sdss.tune.st \
--tuning_ratings_in sdss.tune.ratings

--tuning_models_out

File prefix for storage of all tuningmodels. Used only in conjunction with--tuning_
in.

Usage:
--tuning_in sdss.tune.st \
--tuning_models_out sdss.tune.models

Table 9: CFModel Validation Options
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Command Description

--tuning_ratings_in

Optionally specify a file containing the ratingsof the tuning data. Required if
--tuning_in is provided.

Usage:
--tuning_in sdss.tune.st \
--tuning_ratings_in sdss.tune.ratings

--tuning_results_format

When outputting tuning results, specifywhether the format isCSVor JSON. This value
defaults to CSV.

Note: TheCSV format maychange. If your environment includesanyautomation that
relies on parsing this file, then we recommend using the extensible JSON format.

Usage:
--tuning_results_out sdss.tune.results \
--tuning_results_format json

--tuning_results_out

Optionally specify a file to store all tuning results. Bydefault, the output format isCSV,
but this can be changed to JSON using--tuning_results_format.

Usage:
--tuning_results_out sdss.tune.results

Table 9: CFModel Validation Options (continued)

Command Description

--model_out

Optionally specify a file to store the trainedmodel.

Usage:
--model_out sdss.lsvm.model.0.1

--output_with_ids

If enabled, the per-point--ratings_outoutput will be prepended with the
--testing_in file's "id" meta field followed bya comma. For example, if the
original output is "a,b,c" then the new output would be "ID,a,b,c". If an "id" meta field is
not available in the input, then "-1" is set as the input "id" field (for example, "-1,a,b,c").

This option is disabled bydefault.

Usage:
--output_with_ids on

--ratings_out

Optionally specify a file to store computed ratings.

Usage:
--ratings_out sdss.tune.ratings

--recommendations_out

Optionally specify a file to store the recommendations. Note that items rated by the
user are ignored when computing recommendations. Bydefault, this file outputs in
Mahout format. You can change the output format using the--format_outoption.
The columns in the output areuser_id,item_id,rating.

Usage:
--recommendations_out recommendations

Table 10: CF Output Data Options
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Command Description

--similarity_out

Optionally specify a file to store the similaritymatrix.

Usage:
--similarity_function cosine \
--similarity_out similarity_matrix

Table 10: CF Output Data Options (continued)

Command Description

--alpha

Tunable parameter for inclusion of item features. Specifyalpha=0 (default) to use
pure collaborative filtering, or usealpha=1 for pure content-based filtering.

Usage:
--alpha 1

--cond_prob_damping

Damping used for conditional probability. Used only in conjunction with
--similarity_function=conditional_prob.

Usage:
--similarity_function conditional_prob \
--cond_prob_damping 10

--k_neighbors

Optionally specify the number of neighbors for collaborative filtering. This value
defaults to 0. For 0, all neighbors are used.

Usage:
--k_neighbors 5

--max_sims_per_item

Optionally specify themaximum number of similarities retained for each item. If 0
(default) is specified, all similar itemsare retained. Note that by restricting the number
of similarities per item, accuracymaydeteriorate.

Usage:
--max_sims_per_item 2

--min_ratings_per_user

Optionally specify theminimum number of ratingsper user for consideration in the
similaritymatrix computation. This parameter affects accuracy, speed andmemory
usage indirectly via the size of the resulting similaritymatrix.With a default value of 1,
every rated itemwill be included.

Usage:
--min_ratings_per_user 0

Table 11: Tunable Collaborative Filtering options. Specify a single value, comma-separated list or <min>:<step
size>:<max>
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Command Description

--similarity_function

Optionally specify the similarity function(s) to use. Select one or multiple (comma-
separated) of the following:

• cosine (default for --unary=on)

• adjusted_cosine (default for --unary=off)

• adjusted_cosine_norm

• pearson

• pearson_norm

• co-occurrence

• conditional_prob (unary only)

• jaccard (unary only)

• all (for tuning)

Usage:
--unary off \
--similarity_function co-occurrence \
--training_ratings_in user_items.ratings

--threshold

Specify to discard item pairswith a similarity value below this. This value defaults to 0.

Usage:
--threshold -0.1

Table 11: Tunable Collaborative Filtering options. Specify a single value, comma-separated list or <min>:<step
size>:<max> (continued)

Command Description

--biased_prediction

If set, correct for biased baseline during prediction. Only for adjusted_cosine,
adjusted_cosine_norm,pearson, andpearson_norm.

Usage:
--similarity_function pearson \
--biased_prediction on

--compression

Compression for data. Reduces computational resource requirements.

Note: Unlike other commands, the= symbol ismandatorywhen specifying this option.

Usage:
--compression=off

Table 12: Collaborative Filtering Options
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Command Description

--format_out

Bydefault, the--recommendations_out file outputs in Mahout format. You can
use the--format_outoption to change this to one of the following formats.

• json - output will be a json file

• csv - output will be a csv file in the format user_id,item_
id,rating

Note that the specified format shouldmatch the file extension of the
--recommendations_out file.

Usage:
--recommendations_out recommendations.json \
--format_out json

--k_for_precision

Optionally specify kasan integer to be used for holdout sets and user-by-user
precision at k. This value defaults to 5.

Usage:
--k_or_precision 4

--mean_impute

Specify to performmean imputation if fewer than--num_recommendations
recommendationsare found for a user. This option cannot be used with
--unary=on. This value defaults to on, but is automatically turned off when
--unary=on is specified.

Usage:
--num_recommendations 10 \
--mean_impute off

--metric_weights_in

Optionally specify a file with metricweights for item feature similarity computation.

Usage:
--metric_weights_in random.csv

--normalize_similarity

Specify to normalize rowsof the similaritymatrix. This value defaults to off. Can only be
used in conjunction with--unary=on.

Usage:
--unary on \
--normalize_similarity on

--num_recommendations

Specify the number of recommendations to compute per user. This option defaults to
10.

Usage:
--num_recommendations 20

Table 12: Collaborative Filtering Options (continued)

220 | Skytree Server User Guide Confidential Appendix B Command Reference



Command Description

--objective_function

Thecfmodule bydefault selects the tunedmodelwith the best mean absolute error
to be used for testing and/or file output. Use the--objective_functionoption
to specify an alternate objective function to use during tuning. Values include the
following:

• absolute_precision

• relative_precision

• hit_rate

• absolute_error (default)

• mean_squared_error

• l1_relative_error

• l2_relative_error

Usage:
--objective_function relative_precision

--popularity_impute

Specify to push in themost popular items if fewer than--num_recommendations
recommendationsare found. This value defaults to off, but it is automatically turned on
if--unary=on is specified.

Usage:
--num_recommendations 10 \
--popularity_impute on

--recurrent

If enabled, then recommendationswill be computed for items that were previously
rated in the training set. This option is disabled bydefault.

Usage:
--recurrent off

--rank_error_tol

Specify a value between 0 and 1 for the relative rankerror tolerance for item feature
similarity computation in conjunction with--max_sims_per_item. This value
defaults to 0.

Usage:
--rank_error_tol 0.05

--unary

Consider data without ratings, e.g., hit, no hit. Supported similarity functionsare:

• cosine

• conditional_prob

• jaccard

This option defaults to off. In addition, this option cannot be used with--mean_
impute.

Usage:
--unary on

Table 12: Collaborative Filtering Options (continued)
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Command Description

--fast_read

If set, disable verbose input checks for faster file reads. This option defaults to off.

Usage:
--fast_read on

--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server.

Usage:
--hosts localhost,127.0.0.1

--input_file

If given, load input options from this file.

Usage:
--input_file input

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

--threads

Optionally specify the number of per-process threads. For single host execution, the
default number of threads is set to themaximum available on the host. In distributed
mode, the number of threadsavailable to each host is the smallest maximum available
number of threadsamong the hosts. For example, if--hosts=host1,host2 is
specified and hosts "host1" and "host2" have, respectively, 4 and 8 threadsavailable, 4
threadswill be used for each process.

Usage:
--threads 16

Table 13: General CF Options
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Command Description

--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 13: General CF Options (continued)

Convert Data Options

The following tables show the options available in convert_data.sh.

Command Description

-file

Required. Specify the file data input file.

Usage:
-file income.data

-header_in

Required. Specify the header input file.

Usage:
-header_in income.header

-weights

Specify a file containing a weight vector for columns. The weightsmust be in CSV
format and contain exactly the same number of entries as the number of relevant rows
in the header file.

Usage:
-weights weights.csv

Table 14: Convert Data Input Data Options
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Command Description

-data_out

Required. Specify an output file name. If-time_series=on, then specify an
output directory.

Usage:
-data_out income.data_prep.st

-labels_out

The output labels file. This requires-label_index. This cannot be used with
-time_series.

Usage:
-label_index 15 \
-labels_out income.data_prep.labels

-targets_out

The output targets file. This requires-target_index. This cannot be used with
-time_series.

Usage:
-target_index 1
-targets_out income.data_prep.targets

Table 15: Convert Data Output Data Options - Non-Time-Series

Command Description

-id_map_file

The output file with the file name for each ID. This is required for Time Series. This
cannot be specified when-time_series=off.

Usage:
-time_series on \
-id_map_file specimen.map.out

Table 16: Convert Data Output Data Options - Time-Series-Only

Command Description

-max_open_files

When-time_series=on, specify themaximum number of files to be kept open at
the same time.

Usage:
-time_series on \
-max_open_files 10

-time_series

If enabled, this indicates that data represents a time series. This option is disabled by
default.

Usage:
-time_series on

Table 17: Convert Data Options - Time-Series-Only
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Command Description

-clamp_out_of_range

If supplied, valuesbeyond themin andmax range in the header will be clamped. This
option cannot be used with-ignore_out_of_range.

Usage:
-clamp_out_of_range on

-extract_from_timestamp

When a header file includes timestamped data, you can use this option to extract
specific date information. Specify a comma-separated list of anyof the following. A
column is created in the output file for each option that is specified.

• millisecond

• second

• minute

• hour_of_day

• day_of_week

• day_of_month

• week_of_month

• month

• day_of_year

• week_of_year

• year

Usage:
-extract_from_timestamp second,month,day_of_week,year

-horizontalize

If enabled, this createsa column for each possible value of a categorical feature.

Usage:
-horizontalize on

-id_index

For Time-Series, specify a column number or column name indicating the row
identifier. This option is required if-time_series=on.

Usage:
-time_series on \
-id_index 2

For non-Time-Series, if this is specified duringgenerate-header.sh, then either
the same-id_indexmust be specified here (thereby copying the strings into the
output file) or the columnmust be ignored using-ignore_columns.

Usage:
-id_index 2

Table 18: Convert Data Additional Options
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Command Description

-ignore_columns

A comma-separated list of column numbers, column names, or rangesof these to be
ignored. For Time Series, this represents the columns to ignore in sliding windows.

Usage:
-ignore_columns 2,6-9,13

-ignore_constant_columns

Specifywhether to ignore columnswith a single value for all rows.

Usage:
-ignore_constant_columns on

-ignore_lines

Specify the number of header lines to ignore.When this option is used with multiple
-filearguments, it must be specified once for each.Whenmultiple-ignore_
linesare specified, the first instance of-ignore_linesapplies to the first
-fileargument, and so on.

Usage:
-ignore_lines 1

-ignore_missing

If enabled, rowswith missing valueswill be ignored. This value defaults to off.

Usage:
-ignore_missing on

-ignore_new_words

Specifywhether to ignore wordsnot appearing in the words_columnsdictionaries.
(Refer to the description for -words_columns (page 246) for more information.) This
option is disabled bydefault.

Usage:
-ignore_new_words on

-ignore_out_of_range

If supplied, rowswith valuesbeyond themin andmax ranges in the header will be
ignored. This option cannot be used with-clamp_out_of_range. This value is
disabled bydefault.

Usage:
-ignore_out_of_range on

-label_index

The column number or name indicating the classification label. For example, a value of
15 identifies column 15 as the label index. Label indices start at 1.

Usage:
-label_index 10

-mean_impute

When enabled, missing values for numerical featuresare replaced with mean values,
andmissing values for categorical featuresare treated asdistinct values. This value
defaults to on.

Usage:
-mean_impute off

Table 18: Convert Data Additional Options (continued)
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Command Description

-normalize

The normalizationmethod to use. Specify one of the following:

• unit: This form makes the data range between 0 and 1.

• standard: This gives the data a mean value of 0 and unit variance.

Usage:
-normalize unit

-rare_words_pct

Filter words less frequent than this percentage. This value defaults to 0.0.

Usage:
-rare_words_pct 10

-sparse_columns

A comma-separated list of column numbers, column names, or rangesof columns
containing sparse data. Anall_columns keyword can also be specified.

Usage:
-sparse_columns 11,12

-stop_words_pct

Filter wordsmore frequent than this percentage. This value defaults to 100.0.

Usage:
-stop_words 10

-target_index

The column number or column name of the regression target.

Usage:
-target_index 1

Table 18: Convert Data Additional Options (continued)

Database Connection Options

The following table shows the options available with the db-connect.sh script.

Command Description

-categorical_number

Comma-delimited list of namesof the numerical columns to be considered categorical.
When specified, numeric valueswithin those columnsare considered as categorical
numbers. (For example, 0100, 100, and 100.0 are treated as the same value.)
Requires-header_out.

Usage:
-header_out header.actual \
-categorical_number 5,9,3

-csv_out

The csv-formatted output file. Note that, while output files are in CSV format, header
files are in the same format as those created bygenerate-header.sh.

Usage:
-csv_out data.actual

Table 19: Database Connect Options
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Command Description

-db_url

REQUIRED. The database to connect to. Please consult your database vendor’s
documentation to determine how to use your JDBC driver, as these URL formats can
change between releases.

Usage:
-db_url jdbc:sqlite:ints.db

-header_out

The output header file.

Usage:
-header_out header.actual

-jdbc_driver

REQUIRED. The JDBC driver classname. Be sure to consult your database vendor’s
documentation to determine how to obtain a JDBC driver and how to use it.

Usage:
-jdbc_driver org.sqlite.JDBC

-labels_column

Optionally specify the name of the column containing classification labels. Requires
-header_out.

Usage:
-header_out data.actual \
-labels_column 2

-mysql_stream

When usingMySQL database, specifywhether to stream results in chunks.

Usage:
-mysql_stream on

-null_string

Enter a string that will represent database NULLs in the output. This string defaults to
NULL.

Usage:
-null_string NULLs

-password

If your database requiresauthentication, use this to specify your password. Note that if
-user is specified without-password, you will be prompted to enter a password.

Usage:
-user auser \
-password auser.password

-postgresql_stream

When using PostgreSQL, specifywhether to stream results in chunks.

Usage:
-postgresql_stream on

-regard_case

Specifywhether to regard the case of textual data. For example, if this option is
enabled, then USD and usd will be treated the same.

Usage:
-regard_case on

Table 19: Database Connect Options (continued)
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Command Description

-sql_query

REQUIRED. Specify the SQL query to execute.

Usage:
-sql_query "SELECT some_int,some_tiny_int, \

some_small_int, some_big_int \
FROM int_table"

-user

If your database requiresauthentication, use this to specify your user name. Note that
if-user is specified without-password, you will be prompted to enter a password.

Usage:
-user auser

Table 19: Database Connect Options (continued)

Generalized Linear Model Classification Options

The following tables show the options available in the glmc module.

Command Description

--model_in

Optionally specify a file fromwhich to load themodel.

Usage:
--model_in model

--testing_in

Optionally specify a file containing the testing data.

Usage:
--testing_in sdss_test.st

--training_in

REQUIRED. Specify the file containing the training data.

Usage:
--training_in sdss.train.st

--training_labels_in

Specify the file containing the class labels of the training data.

Usage:
--training_labels_in sdss.train.labels

--yield_values_in

Optionally specify the file used to calculate yield valuesduring tuning. Thismust be the
same length aseither the training or tuning vector, depending on whether you are
using holdouts or a tuning table.

Note that if--testing_objective=yield is specified, then this option is
required, and its value will be used to determine the best model.

Usage:
--yield_values_in income.yield.st

Table 20: GLMC Input Data Options
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Command Description

--holdout_ratio

Optionally specify the fraction of the table to be held out for tuning.

Usage:
--holdout_ratio 0.2

--holdout_seed

Optionally specify the holdout sampling random number seed. This value also serves
as the seed for --num_folds. If omitted, a time-based seed will be used.

Usage:
--holdout_seed 2

--num_folds

Optionally specify the number of folds for k-fold cross-validation. If--holdout_
ratio is also specified, thenMonte Carlo cross-validation (with randomlydrawn
holdout sets) is instead performedwith the specified number of restarts.

Usage:
--num_folds 10

--smart_search

Specify to use an intelligent tuning technique (instead of naive grid search). No tuning
parameters need to be specified when using this flag. However, if desired, users can
provide open or closed intervals for any tuning parameter using<min>:<max>or
<min>: or :<max>. Specific valuesat regular intervals can also be specified with
<min>:<step>:<max>.

Note that this option cannot be used in conjunction with--model_inor
--probability_threshold.

Usage:
--smart_search on

--smart_search_iterations

When--smart_search=on, optionally specify the number of search rounds to try
for tuning. This valuemust be greater than0and defaults to100.

Usage:
--smart_search on \
--smart_search_iterations 500

--smart_search_seed

When--smart_search=on, optionally specify the search seed. If omitted, a time-
based seed will be used.

Usage:
--smart_search on \
--smart_search_seed 82427

--smart_search_restart_in

When using smart search, optionally specify to load data from a file to continue smart
search from saved data.

Usage:
--smart_search on \
--smart_search_iterations 10 \
--smart_search_restart_in income.data.restart

Table 21: GLMC Model Validation Options
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--smart_search_restart_out

When using smart search, optionally specify to save smart search data to a file. This file
can then be specified when running additional smart search iterations.

Usage:
--smart_search on \
--smart_search_iterations 10 \
--smart_search_restart_out income.train.restart

--tuning_in

Optionally specify a file containing the tuning data. Cannot be provided together with
--num_foldsor --holdout_ratio. If specified, then--tuning_labels_
inmust also be specified.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels

--tuning_labels_in

If--tuning_in is specified, then also specify a file containing the labels of the tuning
data.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels

--tuning_models_out

File prefix for storage of all tuningmodels. Used only in conjunction with--tuning_
in. Note that this generatesa singlemodel file storing all of the trees tuned over rather
than generating separate lists. To limit the number of treeswhen using thismodel,
specify the--num_treesoption when loading thismodel.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels \
--tuning_models_out sdss.tune.models

--tuning_results_format

When outputting tuning results, specifywhether the format isCSVor JSON. This value
defaults to CSV.

Note: TheCSV format maychange. If your environment includesanyautomation that
relies on parsing this file, then we recommend using the extensible JSON format.

Usage:
--tuning_results_out sdss.tune.results \
--tuning_results_format json

--tuning_results_out

Optionally specify a file to store all tuning results. Bydefault, the output format isCSV,
but this can be changed to JSON using--tuning_results_format.

Usage:
--tuning_results_out sdss.tune.results

Table 21: GLMC Model Validation Options (continued)
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--labels_out

Optionally specify a file to store computed labels.

Usage:
--labels_out results

--model_out

Optionally specify a file to store the trainedmodel.

Usage:
--model_out sdss.lsvm.model.0.1

--output_with_ids

If enabled, the per-point output for --labels_outand--probabilities_
outwill be prepended with the input file's "id" meta field followed bya comma. For
example, if the original output is "a,b,c" then the new output would be "ID,a,b,c"
where "ID" is an integer (1, -1). If an "id" meta field is not available in the input,
then "0" is set as the input "id" field (for example, "0,a,b,c").

This option is disabled bydefault.

Usage:
--output_with_ids on

--partial_dependencies_out

Specify the file to store the partial dependenciesof the relevant featuresand/or
feature pairs in JSON format. These can be used to generate partial dependence
plots.

This option is available when:

• Training along with (model save OR testing)

• Tuning followed by training + (model save OR testing)

Usage:
--partial_dependencies_out dependencies.json

--pmml_out

Specify the file name to use when exportingmodels to PMML format.

Usage:
--pmml_out income.pmml

--probabilities_out

Optionally specify a file to store computed probabilities.

Usage:
--probabilities_out sdss.test.probabilities

Table 22: GLMC Output Data Options

Command Description

--l1_penalty

Specify the penalty value for L1 (LASSO) regularization. This valuemust be >=0.0.
Specifying both L1 and L2 values> 0 will result in ElasticNet regularization.

Usage:
--l1_penalty 0.1

Table 23: Tunable GLMC Options. Specify a single value, comma-separated list, or <min>:<step size>:<max>.
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--l2_penalty

Specify the penalty value for L2 (Ridge) regularization. This valuemust be >=0.0 and
defaults to 1.0. Specifying both L1 and L2 values> 0 will result in ElasticNet
regularization.

Usage:
--l2_penalty 0.5

Table 23: Tunable GLMC Options. Specify a single value, comma-separated list, or <min>:<step size>:<max>.
(continued)

Command Description

--classification_objective

Optionally specify the objective for classification threshold tuning. Specify either
fscore (default) or accuracy. This option cannot be used in conjunction with
--probability_threshold.

Usage:
--classification_objective accuracy

--epsilon

Specify the numerical accuracy to which to train the GLMCmodel. This valuemust be
> 0.0 and defaults to 0.001.

Usage:
--epsilon 0.002

--exclude_bias_term

If set, the GLMC formulation will not have a bias term. A bias term is used bydefault.

Usage:
--exclude_bias_term on

--k_for_precision

Optionally specify kasa value between0and1 for precision at the top 100k-th
percentile. kdefaults to0.1.

Usage:
--k_for_precision 0.2

--link

Specify the link function to use for the GLMCmodel. Options include:

• logit (default): logistic

• cloglog: complementary log-log

Usage:
--link cloglog

--max_cache_memory

Specify themaximum allowedmemory, in megabytes, used to cache the rowsof the
kernelmatrix (to reduce recomputation). This value defaults to 500MB.

Usage:
--max_cache_memory 1000

Table 24: Non-Tunable GLMC Options
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--max_iterations

Specify themaximum allowed number of iterations for the training algorithm. This
valuemust be >0and defaults to 1000. For GLMC training, this corresponds to the
number of passesover the data.

Usage:
--max_iterations 5000000

--probability_threshold

Optionally specify the probability to be used as the threshold for classification. Cannot
be used in conjunction with--classification_objectiveor --testing_
objective. Similarly, because--probability_threshold cannot be used
during tuning, this option cannot be specified with--smart_search.

Usage:
--probability_threshold 0.8208208919380429

--table_sampling_seed

Specify the data sampling random number seed. If omitted, a time-based seed will be
used.

Usage:
--table_sampling_seed 1359937539

--testing_objective

Optionally specify the objective for selecting the test model from a set of tunedmodels.
Specify one of the following:

• gini (default)

• fscore

• accuracy

• capture_dev

• precision_at_k

• yield

Cannot be used in conjunction with--probability_threshold.

Note that ifyield is specified, then--yield_values_inmust also be specified.

Usage:
--testing_objective capture_dev

Table 24: Non-Tunable GLMC Options (continued)

Command Description

--fast_read

If set, disable verbose input checks for faster file reads. This option defaults tooff.

Usage:
--fast_read on

Table 25: General GLMC Options
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--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server.

Usage:
--hosts localhost,127.0.0.1

--input_file

If given, load input options from this file.

Usage:
--input_file input

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--memory

Specifies the amount of memoryallocated for Skytree Server computation on each
host.When training, testing, or tuning via grid-search, if Skytree Server cannot
operate within the given amount of memory, it failswith an error message indicating
the amount of memory required for computation..

Usage:
--memory 10240

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

--threads

Optionally specify the number of per-process threads. For single host execution, the
default number of threads is set to themaximum available on the host. In distributed
mode, the number of threadsavailable to each host is the smallest maximum available
number of threadsamong the hosts. For example, if--hosts=host1,host2 is
specified and hosts "host1" and "host2" have, respectively, 4 and 8 threadsavailable, 4
threadswill be used for each process.

Usage:
--threads 16

Table 25: General GLMC Options (continued)
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--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 25: General GLMC Options (continued)

Generalized Linear Model Regression Options

The following tables show the options available in the glmr module.

Command Description

--model_in

Optionally specify a file fromwhich to load themodel.

Usage:
--model_in model

--testing_in

Optionally specify a file containing the testing data.

Usage:
--testing_in kddcup_test.st

--training_in

Specify the file containing the training data.

Usage:
--training_in kddcup.train.st

--training_targets_in

Specify the file containing the targets of the training data.

Usage:
--training_targets_in kddcup.targets

Table 26: GLMR Input Data Options
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--holdout_ratio

Optionally specify the fraction of the table to be held out for tuning.

Usage:
--holdout_ratio 0.2

--holdout_seed

Optionally specify the holdout sampling random number seed. This value also serves
as the seed for --num_folds. If omitted, a time-based seed will be used.

Usage:
--holdout_seed 2

--num_folds

Optionally specify the number of folds for k-fold cross-validation. If--holdout_
ratio is also specified, thenMonte Carlo cross-validation (with randomlydrawn
holdout sets) is instead performedwith the specified number of restarts.

Usage:
--num_folds 5

--smart_search

Specify to use an intelligent tuning technique (instead of naive grid search). No tuning
parameters need to be specified when using this flag. However, if desired, users can
provide open or closed intervals for any tuning parameter using <min>:<max>or
<min>: or :<max>. Specific valuesat regular intervals can also be specified with
<min>:<step>:<max>.

Note that this option cannot be used in conjunction with--model_in.

Usage:
--smart_search on

--smart_search_iterations

When--smart_search=on, optionally specify the number of search rounds to try
for tuning. This valuemust be greater than0and defaults to100.

Usage:
--smart_search on \
--smart_search_iterations 500

--smart_search_restart_in

When using smart search, optionally specify to load data from a file to continue smart
search from saved data.

Usage:
--smart_search on \
--smart_search_iterations 10 \
--smart_search_restart_in kddcup.restart

--smart_search_restart_out

When using smart search, optionally specify to save smart search data to a file. This file
can then be specified when running additional smart search iterations.

Usage:
--smart_search on \
--smart_search_iterations 10 \
--smart_search_restart_out kddcup.train.restart

Table 27: GLMR Model Validation Options
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--smart_search_seed

When--smart_search=on, optionally specify the search seed. If omitted, a time-
based seed will be used.

Usage:
--smart_search on \
--smart_search_seed 82427

--tuning_in

Optionally specify a file containing the tuning data. Cannot be provided together with
--num_foldsor --holdout_ratio.

Usage:
--tuning_in kddcup.tune.st \
--tuning_targets_in kddcup.targets

--tuning_models_out

Optionally specify a file prefix for storage of all tuningmodels. Used only in conjunction
with--tuning_in.

Usage:
--tuning_in kddcup.tune.st \
--tuning_models_out kddcup.tune.models

--tuning_results_format

When outputting tuning results, specifywhether the format isCSVor JSON. This value
defaults toCSV.

Note: TheCSV format maychange. If your environment includesanyautomation that
relies on parsing this file, then we recommend using the extensibleJSON format.

Usage:
--tuning_results_out kddcup.tune.results \
--tuning_results_format json

--tuning_results_out

Optionally specify a file to store all tuning results. Bydefault, the output format isCSV,
but this can be changed toJSON using--tuning_results_format.

Usage:
--tuning_results_out kddcup.results

--tuning_targets_in

Specify an file containing the targets of the tuning data. Required if--tuning_in is
provided.

Usage:
--tuning_in income.tune.st \
--tuning_targets_in income.tune.targets

Table 27: GLMR Model Validation Options (continued)

Command Description

--model_out

Optionally specify a file to store the trainedmodel.

Usage:
--model_out kddcup.model

Table 28: GLMR Output data Options
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--output_with_ids

If enabled, the per-point--targets_outoutput will be prepended with the input
file's "id" meta field followed bya comma. For example, if the original output is "a,b,c"
then the new output would be "ID,a,b,c" where "ID" is an integer (1, -1). If an "id" meta
field is not available in the input, then "0" is set as the input "id" field (for example,
"0,a,b,c").

This option is disabled bydefault.

Usage:
--output_with_ids on

--partial_dependencies_out

Specify the file to store the partial dependenciesof the relevant featuresand/or
feature pairs in JSON format. These can be used to generate partial dependence
plots.

This option is available when:

• Training along (model save OR testing)

• Tuning followed by training + (model save OR testing)

Usage:
--partial_dependencies_out dependencies.json

--pmml_out

Specify the file name to use when exportingmodels to PMML format.

Note: This option is not supported for distributed non-linear SVM.

Usage:
--pmml_out sdss.pmml

--targets_out

Optionally specify a file to store computed targets.

Usage:
--targets_out targets.glmr

Table 28: GLMR Output data Options (continued)

Command Description

--l1_penalty

Specify the penalty value for L1 (LASSO) regularization. This valuemust be >=0.0.
Specifying both L1 and L2 values> 0 will result in ElasticNet regularization.

Usage:
--l1_penalty 0.1

--l2_penalty

Specify the penalty value for L2 (Ridge) regularization. This valuemust be >=0.0 and
defaults to 1.0. Specifying both L1 and L2 values> 0 will result in ElasticNet
regularization.

Usage:
--l2_penalty 0.5

Table 29: Tunable GLMR Options. Specify a single value, comma-separated list, or <min>:<step size>:<max>.
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--tweedie_exponent

When--family=tweedie, specify a value for the exponent. This option hasno
default value and, therefore, must be explicitly specified when configuring the Tweedie
loss function. This valuemust be > 1.0and <2.0. If users desire a value of1, they
should specify the Poisson family and Log link function. Similarly, if users desire an
exponent equal to2.0, they should specifyGamma family along with the Log link
function.

Note that users can also tune over this option with values>1.0and <2.0. When
used for tuning, the output CSVwill have an extra column for this value.

Usage:
--family tweedie \
--tweedie_exponent 1.5

Table 29: Tunable GLMR Options. Specify a single value, comma-separated list, or <min>:<step size>:<max>.
(continued)

Command Description

--epsilon

Specify the numerical accuracy to which to train the GLMRmodel. This valuemust be
> 0.0 and defaults to 0.001.

Usage:
--epsilon 0.002

--exclude_bias_term

If set, the GLMR formulation will not have a bias term. A bias term is used bydefault.

Note: This option cannot be used with the following family-link pairs: Gamma-Inverse,
Poisson-Identity, or Poisson-Sqrt.

Usage:
--exclude_bias_term on

--family

Specify the family function to use for a GLMRmodel. Options include:

• gamma

• gaussian (default)

• poisson

• tweedie

Usage:
--family poisson

Table 30: Non-Tunable GLMR Options
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--link

Specify the link function to use for the GLMRmodel. Options include:

• canonical. This can be use with any --family option.

• identity. This can be specified if --family is gaussian or
poisson.

• inverse. This can be specified if --family is gamma.

• log. This can be specified if --family is gamma, poisson, or
tweedie.

• sqrt. This can be specified if --family is poisson.

Usage:
--family poisson \
--link log

--max_cache_memory

Specify themaximum allowedmemory, in megabytes, used to cache the rowsof the
kernelmatrix (to reduce recomputation). This value defaults to 500MB.

Usage:
--max_cache_memory 1000

--max_iterations

Specify themaximum allowed number of iterations for the training algorithm. This
valuemust be >0. For GLMR training, this corresponds to the number of passesover
the data.

Usage:
--max_iterations 5000000

--table_sampling_seed

Specify the data sampling random number seed. If omitted, a time-based seed will be
used.

Usage:
--table_sampling_seed 1359937539

--testing_objective

Optionally specify the objective for selecting the test model from a set of tunedmodels.
Specify one of the following:

• mean_absolute_error (default)

• mean_squared_error

• coeff_determination

• normalized_gini

Usage:
--testing_objective mean_squared_error

Table 30: Non-Tunable GLMR Options (continued)
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--fast_read

If set, disable verbose input checks for faster file reads. This option defaults tooff.

Usage:
--fast_read on

--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server.

Usage:
--hosts localhost,127.0.0.1

--input_file

If given, load input options from this file.

Usage:
--input_file input

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--memory

Specifies the amount of memoryallocated for Skytree Server computation on each
host.When training, testing, or tuning via grid-search, if Skytree Server cannot
operate within the given amount of memory, it failswith an error message indicating
the amount of memory required for computation..

Usage:
--memory 10240

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

Table 31: General GLMR Options
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--threads

Optionally specify the number of per-process threads. For single host execution, the
default number of threads is set to themaximum available on the host. In distributed
mode, the number of threadsavailable to each host is the smallest maximum available
number of threadsamong the hosts. For example, if--hosts=host1,host2 is
specified and hosts "host1" and "host2" have, respectively, 4 and 8 threadsavailable, 4
threadswill be used for each process.

Usage:
--threads 16

--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 31: General GLMR Options (continued)

Generate Header Options

The following tables show the options available in generate-header.sh.

Command Description

-file

Required. Specify the file that contains the data to be analyzed. This can be entered
multiple times to includemultiple files.

Usage:
-file income.data

-max_percentiles

An optional file containing a vector of maximum percentiles, each between0and1, for
clamping. The vector lengthmust be the same as the number of columns in the data
files. Note that this option can bememory intensive.

Usage:
-max_percentiles income.max

Table 32: Generate Header Input Data Options
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-min_percentiles

A file containing a vector of minimum percentiles, each between0and1, for clamping.
The vector lengthmust be the same as the number of columns in the data files. Note
that this option can bememory intensive.

Usage:
-min_percentiles income.min

Table 32: Generate Header Input Data Options (continued)

Command Description

-header_out

Required. Specify the output file.

Usage:
-header_out income.header

Table 33: Generate Header Output Data Options

Command Description

-categorical_number

Comma-delimited list of column numbersor names, a rangesof columns, or a range
of columnswith a step size.When specified, numeric valueswithin those columnsare
considered as categorical numbers. (For example,0100,100, and100.0are
treated as the same value.)

Usage:
-categorical_number 3,5

-categorical_text

Comma-delimited list of column numbersor names, a rangesof columns, or a range
of columnswith a step size.When specified, numeric valueswithin those columnsare
considered as categorical text. (For example,0100,100, and100.0are treated as
distinct values.)

Usage:
-categorical_text 4,6

-categorical_warn_pct

Warn if the number of categories exceeds this percentage of items.

Usage:
-categorical_warn_pct .20

-date_format

Specify the date format for the timestamp. If this option is not specified, then the
timestamp is assumed to be already converted to a UNIX timestamp.

Usage:
-date_format "mm/dd/yy"

Table 34: Generate Header Additional Options
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-delimiter

Specify a character that separates columns, or specify one ofTAB,COMMA,
SEMICOLON,VBAR, or SPACE. Auto-detected if not specified. Note that Skytree
Server allowsyou to add quotationsaround text so that it will not be confused asa
delimiter (for example, when the delimiter is specified asCOMMA, and an entry includes
a deliberate comma).

Note: Becausemultiple spaces can be used to separate columns, it is necessary to
explicitly denote empty column valueswith""when using-delimiter=SPACE.

Usage:
-delimiter TAB

-id_index

Specify a column number that will include non-categorical text without dictionary
formation duringconvert-data.sh.

Usage:
-id_index 2

-ignore_columns

Specify a single or range of column namesor numbers to be ignored during the
generate-header.shprocess. Similar to-id_index, these columnswill be
treated asnon-categorical text columns, and dictionarieswill not be formed. The
header file will show type "ignored" for these columns. Note that when specified here,
these columnsmust also be included in the-ignore_columnsoption during
convert-data.sh.

Usage:
-ignore_columns 6-9,13

-ignore_inconsistent_rows

Warn, instead of fail, for rows that have too few or toomanycolumns.

Usage:
-ignore_inconsistent_rows on

-ignore_lines

The number of header lines to ignore.When this option is used with multiple-file
arguments, it must be specified once for each.Whenmultiple-ignore_linesare
specified, the first instance of-ignore_linesapplies to the first-fileargument,
and so on.

Usage:
-ignore_lines 1

-label_index

The column number or name indicating the classification label. For example, a value of
15 identifies column 15 as the label index. Label indices start at 1.

Usage:
-label_index 10

-missing_value

A string signifying amissing value. This ensures that Skytree Server treats these
valuesasmissing rather than as text data.

Usage:
-missing_value ?

Table 34: Generate Header Additional Options (continued)
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-num_sparse_input_columns

Specify the number of sparse columns included in libsvm-formatted data.

Usage:
-num_sparse_input_columns 4

-regard_case

Specifywhether to regard the case of textual data. For example, if this option is
enabled, then USD and usd will be treated the same.

Usage:
-regard_case on

-sparse_suggest_pct

Suggest columnsbemade sparse if ratio of zerosor missing valuesexceeds this
percentage. For example, if this value is50, thengenerate-header.shwill
indicate any columns for which the ratio of zero to non-zero valuesexceeds50
percent.

Usage:
-sparse_suggest_pact 30

-time_stamp

Optionally specify the column name or number that includesameasure of time to be
converted to a UNIX timestamp.

Usage:
-time_stamp Date

-time_zone

Specify the timezone for the time stamp to be stored in the header. This value defaults
to GMT.When specified, this valuemust be in the format "GMT + x:00"

Usage:
-date-format "dd/mm/yy hh:mm:ss" \
-time_zone "GMT + 3:00"

-trailing_delimiter

This flag signals that each row hasa trailing delimiter. This can be automatically
determined unlessmissing valuesare indicated by the empty string.

Usage:
-trailing_delimiter on

-use_column_names

Use column names from the first line of the first input file. This implies that-ignore_
lines for that file is at least 1.

Usage:
-use_column_names on

-words_columns

For each possible word in the specified column, this parameter createsa notional
column in the output.st file. The entrywill be1 if the word occurs in a row, and0 if it
doesnot. Becausemost rowsdon't contain anyparticular word, the columnsare
alwaysmade sparse. (That is, there is one entry for each word that occurs; otherwise
the column is not represented in the output.)

Usage:
-words_columns 6

Table 34: Generate Header Additional Options (continued)
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Gradient Boosted Trees Options

The following tables show the options available in the gbt module.

Command Description

--batch_size

Specify the batch size for streamed test points. A larger batch size can increase
throughput but also increase latency. This value defaults to1.

Usage:
--batch_size 2

--classweight

Specify a value for classweights.When used, youmust repeat the--classweight
option for each class in--training_labels_in. The valuesare used to
artificially inflate the impact of the corresponding class. If omitted, classweights of1are
assumed for every class.

Usage:
--training_labels_in sdss.train.labels \
--classweight 10 \
--classweight 1

--model_in

Optionally specify a file fromwhich to load themodel. Note that this cannot be used
with--smart_search.

Usage:
--model_in model

--port

Optionally specify a port number for streaming test data. Must be >=1024 if specified.

Usage:
--port 10000

--smart_search_restart_in

When using smart search, optionally specify to load data from a file to continue smart
search from saved data.

Usage:
--smart_search on \
--smart_search_iterations 10 \
--smart_search_restart_in income.restart

--testing_in

Optionally specify a file containing the testing data.

Usage:
--testing_in sdss_test.st

--testing_offsets_in

Specify a file to use as the offset file during testing. If this file is specified with
--model_in, then you will receive a warning if the input modelwas trained without
offsets. In this case, Skytree Server will continue to run.

Usage:
--testing_offsets_in income.test.offsets

--training_in

REQUIRED. Specify the file containing the training data.

Usage:
--training_in sdss.train.st

Table 35: GBT Input Data Options

Appendix B Command Reference Confidential Skytree Server User Guide | 247



Command Description

--training_labels_in

REQUIRED. Specify the file containing the class labels of the training data.

Usage:
--training_labels_in sdss.train.labels

--training_offsets_in

Specify a file to use as the offset file during training. If this is specified with--tuning_
in, then--tuning_offsets_inmust also be specified.

Usage:
--training_offsets_in income.test.offsets

--training_point_weights_in

Optionally specify a file containing the point weights (for training amodel) for each
point in--training_in. Bydefault, each training point gets a point weight of 1.

Usage:
--training_point_weights_in income.weights

--training_score_weights_in

When evaluating amodel, optionally specify a file containing the score weights for each
point in--training_in. Bydefault, each point in--training_ingets a score
weight of 1.--training_score_weights_inwill only be used if--tuning_
in is not provided and you use a holdout from the--training_in for tuning.
Please specify--tuning_score_weights_in to tune on--tuning_inwith
score weights.

Usage:
--training_score_weights_in income.weights

--tuning_offsets_in

Specify a file to use as the offset file during tuning. Note that when this is used with
--tuning_in, the--training_offsets_in file must also be specified.

Usage:
--tuning_offsets_in income.tune.offsets

--yield_values_in

Optionally specify the file used to calculate yield valuesduring tuning. Thismust be the
same length aseither the training or tuning vector, depending on whether you are
using holdouts or a tuning table.

Note that if--testing_objective=yield is specified, then this option is
required, and its value will be used to determine the best model.

Usage:
--yield_values_in income.yield.st

Table 35: GBT Input Data Options (continued)

Command Description

--holdout_ratio

Optionally specify the fraction of the table to be held out for tuning.

Usage:
--holdout_ratio 0.2

Table 36: GBTModel Validation Options
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Command Description

--holdout_seed

Optionally specify the holdout sampling random number seed. This value also serves
as the seed for --num_folds. If omitted, a time-based seed will be used.

Usage:
--holdout_seed 2

--num_folds

Optionally specify the number of folds for k-fold cross-validation. If--holdout_
ratio is also specified, thenMonte Carlo cross-validation (with randomlydrawn
holdout sets) is instead performedwith the specified number of restarts.

Usage:
--num_folds 10

--smart_search

Specify to use an intelligent tuning technique (instead of naive grid search). No tuning
parameters need to be specified when using this flag. However, if desired, users can
provide open or closed intervals for any tuning parameter using<min>:<max>or
<min>: or :<max>. Specific valuesat regular intervals can also be specified with
<min>:<step>:<max>.

Note that this option cannot be used in conjunction with--model_inor
--probability_threshold.

Usage:
--smart_search on

--smart_search_iterations

When--smart_search=on, optionally specify the number of search rounds to try
for tuning. This valuemust be greater than0and defaults to100.

Usage:
--smart_search on \
--smart_search_iterations 500

--smart_search_seed

When--smart_search=on, optionally specify the search seed. If omitted, a time-
based seed will be used.

Usage:
--smart_search on \
--smart_search_seed 82427

--tuning_in

Optionally specify a file containing the tuning data. Cannot be provided together with
--num_foldsor --holdout_ratio. If specified, then--tuning_labels_
inmust also be specified.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels

--tuning_labels_in

If--tuning_in is specified, then also specify a file containing the labels of the tuning
data.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels

Table 36: GBTModel Validation Options (continued)
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Command Description

--tuning_models_out

File prefix for storage of all tuningmodels. Used only in conjunction with--tuning_
in. Note that this generatesa singlemodel file storing all of the trees tuned over rather
than generating separate lists. To limit the number of treeswhen using thismodel,
specify the--num_treesoption when loading thismodel.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels \
--tuning_models_out sdss.tune.models

--tuning_results_format

When outputting tuning results, specifywhether the format isCSVor JSON. This value
defaults to CSV.

Note: TheCSV format maychange. If your environment includesanyautomation that
relies on parsing this file, then we recommend using the extensible JSON format.

Usage:
--tuning_results_out sdss.tune.results \
--tuning_results_format json

--tuning_results_out

Optionally specify a file to store all tuning results. Bydefault, the output format isCSV,
but this can be changed to JSON using--tuning_results_format.

Usage:
--tuning_results_out sdss.tune.results

--tuning_score_weights_in

Optionally specify a file containing the score weights for each of the tuning points. By
default, each tuning point gets a weight of 1. Use this option with--tuning_in to
tune with score weights.

Usage:
--tuning_score_weights_in income.tune.weights

Table 36: GBTModel Validation Options (continued)

Command Description

--labels_out

Optionally specify a file to store computed labels.

Usage:
--labels_out results

--model_out

Optionally specify a file to store the trainedmodel.

Usage:
--model_out sdss.lsvm.model.0.1

Table 37: GBT Output Data Options
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Command Description

--output_with_ids

If enabled, the per-point output for --labels_out,--probabilities_out,
and--test_point_variable_importances_out (non-EGBT only) will be
prepended with the input file's "id" meta field followed bya comma. For example, if
the original output is "a,b,c" then the new output would be "ID,a,b,c" where
"ID" is an integer (1, -1). If an "id" meta field is not available in the input, then "0" is
set as the input "id" field (for example, "0,a,b,c").

This option is disabled bydefault.

Usage:
--output_with_ids on

--partial_dependencies_out

Specify the file to store the partial dependenciesof the relevant featuresand/or
feature pairs in JSON format. These can be used to generate partial dependence
plots.

This option is available when:

• Training along with (model save OR testing)

• Tuning followed by training + (model save OR testing)

Usage:
--partial_dependencies_out dependencies.json

--pmml_out

Specify the file name to use when exportingmodels to PMML format.

Notes:

• This option is not supported for multi-class classification in GBT.

• This option cannot be used in conjunction with a --loss_function
that is specified as map, ndgc, or mrr.

• The PMML file that is produced requires that missing values are
encoded as '?'. This is a reserved symbol for missing values, and as
such, should not be used anywhere else in your data.

Usage:
--pmml_out income.pmml

--probabilities_out

Optionally specify a file to store computed probabilities.

Usage:
--probabilities_out sdss.test.probabilities

--scores_out

Optionally specify a file to store raw scores that have not been converted to labels,
probabilities, or targets. This file can then be specified during training/tuning/testing.

Usage:
--scores_out income.test.offsets

Table 37: GBT Output Data Options (continued)
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Command Description

--smart_search_restart_out

When using smart search, optionally specify to save smart search data to a file. This file
can then be specified when running additional smart search iterations.

Usage:
--smart_search on \
--smart_search_iterations 10 \
--smart_search_restart_out income.data.restart

--split_importances_buckets

Optionally specify a number of buckets in split importance calculation. Must be >1. This
value defaults to10.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--split_importances_out split.importances.out \
--split_importances_buckets 4

--split_importances_out

Optionally specify a file to store split importances. Requires--training_inand
one of--testing_inor --model_out.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--split_importances_out split_importances.out

--test_point_variable_
importances_out

Optionally specify a file to store variable importances for each test point. Requires
--testing_in.

Usage:
--testing_in income.data.st \
--test_point_variable_importances_out income.data.vimps

--variable_importances_out

Optionally specify a file to store intrinsic variable importances. This output file includesa
single column. The first row is the importancesof the first column variable in the
--training_in .st file, the second row is the importance of the second column,
and so on. Requires--training_inand one of--testing_inor --model_
out.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--variable_importances_out variable_importances.out

--variable_importances_out_
as_json

This option specifies to write variable importancesasa JSON file. The output will
include feature names, attribute names, and column IDsalong with the importance.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--variable_importances_out variable_importances.out
--variable_importances_out_as_json on

Table 37: GBT Output Data Options (continued)
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Command Description

--visualization_out

Optionally specify a directory for model visualization (created if it doesexist). Requires
--training_inand one of--testing_inor --model_out. Cannot be
used in conjunction with--ensemble_size.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--visualization_out income

Table 37: GBT Output Data Options (continued)

Command Description

--ensemble_size

Use--ensemble_sizeGBTswith sampled tablesand randomly sampled split
dimensions.

Usage:
--ensemble_size 10

--imbalance_scale

Relative size of all classeswith respect to the smallest class. Requires
--imbalance. This value defaults to 1.0.

Usage:
--imbalance \
--imbalance_scale 2

--leaf_nodes

The number of leaf nodes in the tree (default: 0). Must be >=0. A value of 0 disables
the parameter. Only one of--tree_depthor --leaf_nodes can be non-zero
at a time. This option is deprecated. Use--max_splits=<leaf_Nodes-1>
instead.

Usage:
--leaf_nodes 5,10,25

--learning_rate

The learning rate. Must be >0and <=1. This value defaults to0.1.

Usage:
--learning_rate 0.05:0.05:0.2

--max_splits

Specify the number of splits in the tree. This valuemust be >=0. A value of0disables
this option. Either this value or --min_node_weightmust be >0 if--tree_
depth is explicitly set to 0.

If both--tree_depthand--max_splitsare > 0, then Skytree Server finds the
best splits that exist within the depth level, up to--max_splits.

This option cannot be used in conjunction with (deprecated) --leaf_nodes.

Usage:
--max_splits 4

Table 38: Tunable GBT Options. Specify a single value, comma-separated list, or <min>:<step size>:<max>.
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Command Description

--min_node_weight

Theminimum bound on the totalweight in each leaf during tree building. This value
defaults to 0. Either this value or --max_splitsmust be > 0 if--tree_depth is
explicitly set to 0.

Usage:
--min_node_weight 4

--num_dimensions

The number of dimensions to randomly sample at each tree node. This option is only
used in conjunction with--ensemble_size. If omitted, all dimensionsare used.

Usage:
--num_dimensions 1:1:4

--num_trees

The number of trees in the ensemble. Must be >0.

Usage:
--num_trees 5:5:100

--regularization_bins

The number of bins to use per dimension/attribute of the data. Used only in
conjunction with--regularization. If omitted (with
--regularization=on), 200 binswill be used.

Usage:
--regularization on \
--regularization_bins 100

--sampling_ratio

Per class sampling ratio. Youmust either specify a single--sampling_ratio that
will be used for all classesor repeat the--sampling_ratiooption for each class
in--training_labels_in. If omitted with an--ensemble_size set and
--sample_with_replacement=on, then full bootstrapping will be used. If an
--ensemble_size is set and--sample_with_replacement=off, then
this option ismandatory.

Usage:
--training_labels_in income.data.labels \
--sampling_ratio 0.25 \
--sampling_ratio 2

--tree_depth

Specifies the depth to which each ensemble is built.

If explicitly set to 0, treeswill be built to the fullest extent. In this case, youmust specify a
positive value for either --max_splitsor --min_node_weight.

If this value is not set, and values for --max_splitsand--min_node_weight
are likewise not set, then this value defaults to 3.

If both--tree_depthand--max_splitsare > 0, then Skytree Server finds the
best splits that exist within the depth level, up to--max_splits.

Usage:
--tree_depth 0:2:10

Table 38: Tunable GBT Options. Specify a single value, comma-separated list, or <min>:<step size>:<max>.
(continued)
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Command Description

--cardinality_based_
dimension_sampling

Categorical dimensionswith larger number of unique values in a given node will have a
proportionately higher chance of being selected when sampling dimensions.
Continuous featuresare treated ashaving one unique value.Whenoff, all
dimensionshave an equal chance of being selected in dimension sampling.

Usage:
--cardinality_based_dimension_sampling off

--categorical_random_split_
threshold

If the number of categorical valuesexceeds this, then random splitting is attempted.
Note that this option is deprecated andmaybe removed in a future release.

Usage:
--categorical_random_split_threshold 5

--categorical_random_split_
tries

The number of times to try random categorical splits. Note that this option is
deprecated andmaybe removed in a future release.

Usage:
--categorical_random_split_tries 8

--categorical_sampling_seed

Optionally specify the categorical values sampling random number seed. Note that this
option is deprecated andmaybe removed in a future release.

Usage:
--categorical_sampling_seed 4

--categorical_selection_
method

Optionally specify one of the following:

• random

• random_exact

• one_vs_all

• one_vs_all_random

• one_vs_all_exact

• exact

Note that this option is deprecated andmaybe removed in a future release.

Usage:
--categorical_selection_method random

--classification_objective

Optionally specify the objective for classification threshold tuning. Specify either
fscore (default) or accuracy. This option cannot be used in conjunction with
--probability_threshold.

Usage:
--classification_objective accuracy

Table 39: Non-tunable GBT Options
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Command Description

--compression

Compression for data. Reduces computational resource requirements.

NOTE: Unlike other commands, the= symbol ismandatorywhen specifying this
option.

Usage:
--compression=off

--dimension_sampling_seed

The dimension sampling random number seed. If omitted, a time-based seed will be
used.

Usage:
--dimensions_sampling_seed 10

--imbalance

If set, attempt to improve classification for imbalanced classes. Cannot be used in
conjunction with--sampling_ratio.

Usage:
--imbalance off

--k_for_precision

Optionally specify kasa value between0and1 for precision at the top 100k-th
percentile. kdefaults to0.1.

Usage:
--k_for_precision 0.2

--limit_parameters

When--smart_search is enabled, this option restricts the parameter space in
order to reduce the training time. This option is enabled bydefault.

Usage:
--smart_search on
--limit_parameters off

--loss_function

Specify themethod to use when performing ranking for non-ensemble GBT. Options
include the following:

• logistic (default)

• ndcg

• map

• mrr

Note: PMML output is not available if--loss_function is specified asanything
other thanlogistic (default).

Usage:
--loss_function ndgc

--num_cached_trees

Optionally specify the number of simultaneously cached trees in the ensemble. Higher
values lead to higher memoryusage. Lower values result in lower memoryusage at
the expense of increased runtime. This value defaults to the number of available
threads.

Usage:
--num_cached_trees 6

Table 39: Non-tunable GBT Options (continued)
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Command Description

--probability_threshold

Optionally specify the probability to be used as the threshold for classification. Cannot
be used in conjunction with--classification_objectiveor --testing_
objective. Similarly, because--probability_threshold cannot be used
during tuning, this option cannot be specified with--smart_search.

Usage:
--probability_threshold 0.8208208919380429

--regularization

Use the fast decision tree construction heuristic. Multiple nodes can be used when this
option is enabled without the need for additional tuning parameters. This value
defaults to on for gbt/gbtr; it defaults to off for ensemblegbt/gbtr.

Usage:
--regularization off

--sample_with_replacement

For each tree, sample the training points using replacement (bootstrap). This option is
on bydefault. If turnedoff,--sampling_ratiomust be provided.

Usage:
--sample_with_replacement off
--sampling_ratio 0.25

--table_sampling_seed

The data sampling random number seed. If omitted, a time-based seed will be used.

Usage:
--table_sampling_seed 1359937539

--testing_objective

Optionally specify the objective for selecting the test model from a set of tunedmodels.
Specify one of the following:

• gini (default)

• fscore

• accuracy

• capture_dev

• precision_at_k

• yield

Cannot be used in conjunction with--probability_threshold.

Note that ifyield is specified, then--yield_values_inmust also be specified.

Usage:
--testing_objective capture_dev

--trim

If provided, observationswith low importance in themodelwill be pruned in successive
iterations. This can lead to significant speedup, but accuracy can suffer. This option
defaults tooff. Cannot be used in conjunction with--regularization.

Usage:
--regularization off \
--trim on

Table 39: Non-tunable GBT Options (continued)
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Command Description

--trim_alpha

Must be >0and <1. Higher values lead tomore aggressive pruning of observations
per iterations. Valuesbetween0.05and0.2are common. This option defaults to
0.2.

Usage:
--trim_alpha 0.08

Table 39: Non-tunable GBT Options (continued)

Command Description

--fast_read

If set, disable verbose input checks for faster file reads. This option defaults to off.

Usage:
--fast_read on

--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server.

Usage:
--hosts localhost,127.0.0.1

--input_file

If given, load input options from this file.

Usage:
--input_file input

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--memory

Specifies the amount of memoryallocated for Skytree Server computation on each
host.When training, testing, or tuning via grid-search, if Skytree Server cannot
operate within the given amount of memory, it failswith an error message indicating
the amount of memory required for computation..

Usage:
--memory 10240

Table 40: General GBT Options
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Command Description

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

--threads

Optionally specify the number of per-process threads. For single host execution, the
default number of threads is set to themaximum available on the host. In distributed
mode, the number of threadsavailable to each host is the smallest maximum available
number of threadsamong the hosts. For example, if--hosts=host1,host2 is
specified and hosts "host1" and "host2" have, respectively, 4 and 8 threadsavailable, 4
threadswill be used for each process.

Usage:
--threads 16

--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to 0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 40: General GBT Options (continued)

Gradient Boosted Trees Regression Options

The following tables show the options available in the gbtr module.

Command Description

--batch_size

Specify the batch size for streamed test points. A larger batch size can increase
throughput but also increase latency. This value defaults to1.

Usage:
--batch_size 2

Table 41: GBTR Input Data Options

Appendix B Command Reference Confidential Skytree Server User Guide | 259
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--classweight

Specify a value for classweights.When used, youmust repeat the--classweight
option for each class in--training_labels_in. The valuesare used to
artificially inflate the impact of the corresponding class. If omitted, classweights of1are
assumed for every class.

Usage:
--training_labels_in kddcup.train.labels \
--classweight 10 \
--classweight 1

--model_in

Optionally specify a file fromwhich to load themodel.

Usage:
--model_in model

--port

Optionally specify a port number for streaming test data. Must be >=1024 if specified.

Usage:
--port 10000

--smart_search_restart_in

When using smart search, optionally specify to load data from a file to continue smart
search from saved data.

Usage:
--smart_search on \
--smart_search_iterations 10 \
--smart_search_restart_in kddcup.restart

--testing_in

Optionally specify a file containing the testing data.

Usage:
--testing_in kddcup_test.st

--testing_offsets_in

Specify a file to use as the offset file during testing. If this file is specified with
--model_in, then you will receive a warning if the input modelwas trained without
offsets. In this case, Skytree Server will continue to run.

Usage:
--testing_offsets_in income.test.offsets

--training_in

REQUIRED. Specify the file containing the training data.

Usage:
--training_in kddcup.train.st

--training_offsets_in

Specify a file to use as the offset file during training. If this is specified with--tuning_
in, then--tuning_offsets_inmust also be specified.

Usage:
--training_offsets_in income.test.offsets

--training_point_weights_in

Optionally specify a file containing the point weights (for training amodel) for each
point in--training_in. Bydefault, each training point gets a point weight of 1.

Usage:
--training_point_weights_in kddcup.weights

Table 41: GBTR Input Data Options (continued)
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--training_score_weights_in

When evaluating amodel, optionally specify a file containing the score weights for each
point in--training_in. Bydefault, each point in--training_ingets a score
weight of 1.--training_score_weights_inwill only be used if--tuning_
in is not provided and you use a holdout from the--training_in for tuning.
Please specify--tuning_score_weights_in to tune on--tuning_inwith
score weights.

Usage:
--training_score_weights_in kddcup.weights

--training_targets_in

REQUIRED. Specify the file containing the targets of the training data.

Usage:
--training_targets_in kddcup.targets

--tuning_offsets_in

Specify a file to use as the offset file during tuning. Note that when this is used with
--tuning_in, the--training_offsets_in file must also be specified.

Usage:
--tuning_offsets_in income.tune.offsets

Table 41: GBTR Input Data Options (continued)

Command Description

--holdout_ratio

Optionally specify the fraction of the table to be held out for tuning.

Usage:
--holdout_ratio 0.2

--holdout_seed

Optionally specify the holdout sampling random number seed. This value also serves
as the seed for --num_folds. If omitted, a time-based seed will be used.

Usage:
--holdout_seed 2

--num_folds

Optionally specify the number of folds for k-fold cross-validation. If--holdout_
ratio is also specified, thenMonte Carlo cross-validation (with randomlydrawn
holdout sets) is instead performedwith the specified number of restarts.

Usage:
--num_folds 10

--smart_search

Specify to use an intelligent tuning technique (instead of naive grid search). No tuning
parameters need to be specified when using this flag. However, if desired, users can
provide open or closed intervals for any tuning parameter using<min>:<max>or
<min>: or :<max>. Specific valuesat regular intervals can also be specified with
<min>:<step>:<max>.

Usage:
--smart_search on

Table 42: GBTR Model Validation Options
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Command Description

--smart_search_iterations

When--smart_search=on, optionally specify the number of search rounds to try
for tuning. This valuemust be greater than0and defaults to100.

Usage:
--smart_search on \
--smart_search_iterations 500

--smart_search_seed

When--smart_search=on, optionally specify the search seed. If omitted, a time-
based seed will be used.

Usage:
--smart_search on \
--smart_search_seed 82427

--tuning_in

Optionally specify a file containing the tuning data. Cannot be provided together with
--num_foldsor --holdout_ratio. If specified, then--tuning_labels_
inmust also be specified.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels

--tuning_models_out

File prefix for storage of all tuningmodels. Used only in conjunction with--tuning_
in. Note that this generatesa singlemodel file storing all of the trees tuned over rather
than generating separate lists. To limit the number of treeswhen using thismodel,
specify the--num_treesoption when loading thismodel.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels \
--tuning_models_out sdss.tune.models

--tuning_results_format

When outputting tuning results, specifywhether the format isCSVor JSON. This value
defaults tocsv.

Note: TheCSV format maychange. If your environment includesanyautomation that
relies on parsing this file, then we recommend using the extensible JSON format.

Usage:
--tuning_results_out sdss.tune.results \
--tuning_results_format json

--tuning_results_out

Optionally specify a file to store all tuning results. Bydefault, the output format isCSV,
but this can be changed to JSON using--tuning_results_format.

Usage:
--tuning_results_out sdss.tune.results

--tuning_score_weights_in

Optionally specify a file containing the score weights for each of the tuning points. By
default, each tuning point gets a weight of 1. Use this option with--tuning_in to
tune with score weights.

Usage:
--tuning_score_weights_in income.tune.weights

Table 42: GBTR Model Validation Options (continued)
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--tuning_targets_in

Specify an file containing the targets of the tuning data. Required if--tuning_in is
provided.

Usage:
--tuning_in income.tune.st \
--tuning_targets_in income.tune.targets

Table 42: GBTR Model Validation Options (continued)

Command Description

--model_out

Optionally specify a file to store the trainedmodel.

Usage:
--model_out sdss.lsvm.model.0.1

--output_with_ids

If enabled, the per-point output for --targets_outand--test_point_
variable_importances_out (non-EGBTR only) will be prepended with the
input file's "id" meta field followed bya comma. For example, if the original output is
"a,b,c" then the new output would be "ID,a,b,c" where "ID" is an integer (1,
-1). If an "id" meta field is not available in the input, then "0" is set as the input "id"
field (for example, "0,a,b,c").

This option is disabled bydefault.

Usage:
--output_with_ids on

--partial_dependencies_out

Specify the file to store the partial dependenciesof the relevant featuresand/or
feature pairs in JSON format. These can be used to generate partial dependence
plots.

This option is available when:

• Training along with (model save OR testing)

• Tuning followed by training + (model save OR testing)

Usage:
--partial_dependencies_out dependencies.json

--pmml_out

Specify the file name to use when exportingmodels to PMML format.

Note: The PMML file that is produced requires that missing valuesare encoded as '?'.
This is a reserved symbol for missing values, and as such, should not be used
anywhere else in your data.

Usage:
--pmml_out income.pmml

--scores_out

Optionally specify a file to store raw scores that have not been converted to labels,
probabilities, or targets. This file can then be specified during training/tuning/testing.

Usage:
--scores_out income.test.offsets

Table 43: GBTR Output Data Options
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--split_importances_buckets

Optionally specify a number of buckets in split importance calculation. Must be >1. This
value defaults to10.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--split_importances_out split.importances.out \
--split_importances_buckets 4

--split_importances_out

Optionally specify a file to store split importances. Requires--training_inand
one of--testing_inor --model_out.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--split_importances_out split_importances.out

--smart_search_restart_out

When using smart search, optionally specify to save smart search data to a file. This file
can then be specified when running additional smart search iterations.

Usage:
--smart_search on \
--smart_search_iterations 10 \
--smart_search_restart_out income.data.restart

--targets_out

Optionally specify a file to store computed targets.

Usage:
--targets_out targets.gbtr

--test_point_variable_
importances_out

Optionally specify a file to store variable importances for each test point. Requires
--testing_in.

Usage:
--testing_in income.data.st \
--test_point_variable_importances_out income.data.vimps

--variable_importances_out

Optionally specify a file to store intrinsic variable importances. This output file includesa
single column. The first row is the importancesof the first column variable in the
--training_in .st file, the second row is the importance of the second column,
and so on. Requires--training_inand one of--testing_inor --model_
out.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--variable_importances_out variable_importances.out

--variable_importances_out_
as_json

This option specifies to write variable importancesasa JSON file. The output will
include feature names, attribute names, and column IDsalong with the importance.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--variable_importances_out variable_importances.out
--variable_importances_out_as_json on

Table 43: GBTR Output Data Options (continued)
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--visualization_out

Optionally specify a directory for model visualization (created if it doesexist). Requires
--training_inand one of--testing_inor --model_out. Cannot be
used in conjunction with--ensemble_size.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--visualization_out income

Table 43: GBTR Output Data Options (continued)

Command Description

--ensemble_size

Use--ensemble_sizeGBTRswith sampled tablesand randomly sampled split
dimensions.

Usage:
--ensemble_size 10

--leaf_nodes

The number of leaf nodes in the tree (default: 0). Must be >=0. A value of 0 disables
the parameter. Only one of--tree_depthor --leaf_nodes can be non-zero
at a time. This option is deprecated. Use--max_splits=<leaf_nodes-1>
instead.

Usage:
--leaf_nodes 5,10,25

--learning_rate

The learning rate. Must be >0and <=1. This value defaults to0.1.

Usage:
--learning_rate 0.05:0.05:0.2

--log_clamp

When--loss_function ispslog,gmlog, or tdlog, optionally specify the
maximum absolute log value for any terminal node. Requires--loss_
function=pslog,--loss_function=gmlog, or --loss_
function=tdlog. This valuemust be > 0and defaults to20.

Usage:
--loss_function pslog \
--log_clamp 10

--max_splits

Specify the number of splits in the tree. This valuemust be >=0. A value of0disables
this option. Either this value or --min_node_weightmust be >0 if--tree_
depth is explicitly set to 0.

If both--tree_depthand--max_splitsare > 0, then Skytree Server finds the
best splits that exist within the depth level, up to--max_splits.

This option cannot be used in conjunction with (deprecated) --leaf_nodes.

Usage:
--max_splits 4

Table 44: Tunable GBTR Options. Specify a single value, comma-separated list, or <min>:<step size>:<max>.
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--min_node_weight

Theminimum bound on the totalweight in each leaf during tree building. This value
defaults to 0. Either this value or --max_splitsmust be >0 if--tree_depth is
explicitly set to0.

Usage:
--min_node_weight 4

--num_dimensions

The number of dimensions to randomly sample at each tree node. This option is only
used in conjunction with--ensemble_size. If omitted, all dimensionsare used.

Usage:
--num_dimensions 1:1:4

--num_trees

The number of trees in the ensemble. Must be >0.

Usage:
--num_trees 5:5:100

--regularization_bins

The number of bins to use per dimension/attribute of the data. Used only in
conjunction with--regularization. If omitted (with
--regularization=on),200binswill be used.

Usage:
--regularization on \
--regularization_bins 100

--sampling_ratio

Per class sampling ratio. If--sample_with_replacement=off, then this
option ismandatory.

Usage:
--sampling_ratio 0.25 \
--sampling_ratio 2

--tree_depth

Specifies the depth to which each ensemble is built.

If explicitly set to0, treeswill be built to the fullest extent. In this case, youmust specify a
positive value for either --max_splitsor --min_node_weight.

If this value is not set, and values for --max_splitsand--min_node_weight
are likewise not set, then this value defaults to 3.

If both--tree_depthand--max_splitsare > 0, then Skytree Server finds the
best splits that exist within the depth level, up to--max_splits.

Usage:
--tree_depth 0:2:10

Table 44: Tunable GBTR Options. Specify a single value, comma-separated list, or <min>:<step size>:<max>.
(continued)
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--approximate_quantiles

This flag is enabled automaticallywhenlador huber is specified for --loss_
function. It allows for an error tolerance of .001 for quantiles on loss functions. For
example, if you specify a--huber_loss_quantileof .33, then quantiles ranging
from .329 to .331 will also be included.

Usage:
--approximate_quantiles off

--cardinality_based_
dimension_sampling

Categorical dimensionswith larger number of unique values in a given node will have a
proportionately higher chance of being selected when sampling dimensions.
Continuous featuresare treated ashaving one unique value.Whenoff, all
dimensionshave an equal chance of being selected in dimension sampling.

Usage:
--cardinality_based_dimension_sampling off

--categorical_random_split_
threshold

If the number of categorical valuesexceeds this, then random splitting is attempted.
Note that this option is deprecated andmaybe removed in a future release.

Usage:
--categorical_random_split_threshold 5

--categorical_random_split_
tries

The number of times to try random categorical splits. Note that this option is
deprecated andmaybe removed in a future release.

Usage:
--categorical_random_split_tries 8

--categorical_sampling_seed

Optionally specify the categorical values sampling random number seed. Note that this
option is deprecated andmaybe removed in a future release.

Usage:
--categorical_sampling_seed 4

--categorical_selection_
method

Optionally specify one of the following:

• random

• random_exact

• one_vs_all

• one_vs_all_random

• one_vs_all_exact

• exact (default)

Note that this option is deprecated andmaybe removed in a future release.

Usage:
--categorical_selection_method random

Table 45: Non-tunable GBTR Options
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--compression

Specifywhether to use compression for data. Enabling this (default) reduces
computational resource requirements.

Note: Unlike other commands, the= symbol ismandatorywhen specifying this option.

Usage:
--compression=off

--dimension_sampling_seed

The dimension sampling random number seed. If omitted, a time-based seed will be
used.

Usage:
--dimension_sampling_seed 10

--huber_loss_quantile

When--loss_function=huber, optionally specify the top percentile of error
that should be considered asoutliers. Requires--loss_function=huber. This
valuemust be between0and1and defaults to0.9.

Usage:
--loss_function huber \
--huber_loss_quantile 0.8

--limit_parameters

When--smart_search is enabled, this option restricts the parameter space in
order to reduce the training time. This option is enabled bydefault.

Usage:
--smart_search on
--limit_parameters off

--loss_function

Optionally specify a loss functionmethod to use during regression. Available values
include the following:

• lad: Perform least absolute deviation (LAD) regression (default)

• ls: Perform least-squares regression

• huber: Perform Huber loss regression

• pslog: Perform Poisson-log regression with positive integral targets
(such as counts)

• gmlog: Perform Gamma-log regression with positive continuous
targets

• gminv: Perform Gamma-inverse regression with positive continuous
targets

• tdlog: Perform Tweedie-log regression. When tdlog is specified,
the --tweedie_exponent option must also be specified. Users can
also tune over the --tweedie_exponent option.

Usage:
--loss_function ls

Table 45: Non-tunable GBTR Options (continued)
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--num_cached_trees

Optionally specify the number of simultaneously cached trees in the ensemble. Higher
values lead to higher memoryusage. Lower values result in lower memoryusage at
the expense of increased runtime. This value defaults to the number of available
threads.

Usage:
--num_cached_trees 6

--regularization

Use the fast decision tree construction heuristic. Multiple nodes can be used when this
option is enabled without the need for additional tuning parameters. This value
defaults toon for gbt/gbtr; it defaults tooff for ensemblegbt/gbtr.

Usage:
--regularization off

--sample_with_replacement

For each tree, sample the training points using replacement (bootstrap). This option is
on bydefault. If turnedoff,--sampling_ratiomust be provided.

Usage:
--sample_with_replacement off \
--sampling_ratio 0.25

--table_sampling_seed

The data sampling random number seed. If omitted, a time-based seed will be used.

Usage:
--table_sampling_seed 1359937539

--testing_objective

Optionally specify the objective for selecting the test model from a set of tunedmodels.
Specify one of the following:

• mean_absolute_error (default)

• mean_squared_error

• coeff_determination

• normalized_gini

Usage:
--testing_objective mean_squared_error

--tweedie_exponent

When--loss_function=tdlog, specify a value for the exponent. Requires
--loss_function=tdlog. This option hasno default value and, therefore, must
be explicitly specified when configuring the Tweedie loss function. This valuemust be
> 1.0and <2.0. If users desire a value of1, they should use Poisson distribution
(pslog). Similarly, if users desire an exponent equal to2.0, they should specify
Gamma distribution (gmlog).

Note that users can also tune over this option with values>1.0and <2.0. When
used for tuning, the output CSVwill have an extra column for this value.

Usage:
--loss_function tdlog \
--tweedie_exponent 1.5

Table 45: Non-tunable GBTR Options (continued)
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--fast_read

If set, disable verbose input checks for faster file reads. This option defaults tooff.

Usage:
--fast_read on

--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server.

Usage:
--hosts localhost,127.0.0.1

--input_file

If given, load input options from this file.

Usage:
--input_file input

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--memory

Specifies the amount of memoryallocated for Skytree Server computation on each
host.When training, testing, or tuning via grid-search, if Skytree Server cannot
operate within the given amount of memory, it failswith an error message indicating
the amount of memory required for computation..

Usage:
--memory 10240

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

Table 46: General GBTR Options
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--threads

Optionally specify the number of per-process threads. For single host execution, the
default number of threads is set to themaximum available on the host. In distributed
mode, the number of threadsavailable to each host is the smallest maximum available
number of threadsamong the hosts. For example, if--hosts=host1,host2 is
specified and hosts "host1" and "host2" have, respectively, 4 and 8 threadsavailable, 4
threadswill be used for each process.

Usage:
--threads 16

--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 46: General GBTR Options (continued)

Hadoop Data Preparation Options

The following tables show the options available in etl-hadoop.sh.

Command Description

-allow_reordering

Allow the output file and optional labels and targets files to not respect the order of
input files.

Usage:
-allow_reordering

-categorical_number

Comma-delimited list of column numbersor names, a rangesof columns, or a range
of columnswith a step size.When specified, numeric valueswithin those columnsare
considered as categorical numbers. (For example,0100,100, and100.0are
treated as the same value.)

Usage:
-categorical_number 3,5

Table 47: Hadoop Data Preparation Options
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-categorical_text

Comma-delimited list of column numbersor names, a rangesof columns, or a range
of columnswith a step size.When specified, numeric valueswithin those columnsare
considered as categorical text. (For example,0100,100, and100.0are treated as
distinct values.)

Usage:
-categorical_text 4,6

-categorical_warn_pct

Warn if the number of categories exceeds this percentage of items.

Usage:
-categorical_warn_pct .20

-create_labels_file

Createsa labels file for classification.When used, a-label_index valuemust also
be specified.

Usage:
-create_labels_file
-label_index 1

-create_targets_file

Createsa targets file for regression.When used, a-target_index valuemust
also be specified.

Usage:
-create_targets_file
-target_index 1

-delimiter

Specify a character that separates columns, or specify one ofTAB,COMMA,
SEMICOLON,VBAR, or SPACE. Auto-detected if not specified. Note that Skytree
Server allowsyou to add quotationsaround text so that it will not be confused asa
delimiter (for example, when the delimiter is specified asCOMMA, and an entry includes
a deliberate comma).

Note: Becausemultiple spaces can be used to separate columns, it is necessary to
explicitly denote empty column valueswith""when using-delimiter SPACE.

Usage:
-delimiter TAB

-header_input_dir

Specify the directory containing the precomputed schema (such asa previous run's
-output_dir).

Usage:
-header_input_dir etl_out

-horizontalize

If enabled, this createsa column for each possible value of a categorical feature.

Usage:
-horizontalize on

-id_index

Specify a column number or name indicating the row identifier.

Usage:
-id_index 2

Table 47: Hadoop Data Preparation Options (continued)
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-ignore_columns

A comma-separated list of column numbers, column names, or rangesof these to be
ignored.

Usage:
-ignore_columns 2,6-9,13

-ignore_constant_columns

Specifywhether to ignore columnswith a single value for all rows.

Usage:
-ignore_constant_columns on

-ignore_missing

If enabled, rowswith missing valueswill be ignored. This value defaults tooff.

Usage:
-ignore_missing on

-input_dir

Specify onemore input directories.When specifyingmultiple directories, an-input_
diroptionmust be included for each input directory. Comma-separated lists are not
supported. In addition, if header linesexist in the input directories, then all files in the
input directoriesmust have identical header lines.

Usage:
-input_dir data1_dir
-input_dir data2_dir

-label_index

The column number or name indicating the classification label. For example, a value of
15 identifies column 15 as the label index. Label indices start at 1.

Usage:
-label_index 10

-max_bad_lines_per_mapper

Treats unrecognized and/or unparsable valuesas if theyweremissing values.

Usage:
-max_bad_lines_per_mapper 10

-missing_value

A string signifying amissing value. This ensures that Skytree Server treats these
valuesasmissing rather than as text data.

Usage:
-missing_value ?

-mean_impute

When enabled, missing values for numerical featuresare replaced with mean values,
andmissing values for categorical featuresare treated asdistinct values. This value
defaults toon.

Usage:
-mean_impute off

-normalize

The normalizationmethod to use. Specify one of the following:

• unit: This form makes the data range between 0 and 1.

• standard: This gives the data a mean value of 0 and unit variance.

Usage:
-normalize unit

Table 47: Hadoop Data Preparation Options (continued)
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-num_sparse_input_columns

Specify the number of sparse columns included in libsvm-formatted data.

Usage:
-num_sparse_input_columns 4

-output_dir

The directory that stores the output files.When including a single input directory,
Skytree Server createsa fileoutput.st in that directory.When includingmultiple
input files, the output will produce.st fileswith basename prefixes that mirror the
input directories' basenames. Note that this file namemust not alreadyexist.

Usage:
-output_dir etl_out

-rare_words_pct

Filter words less frequent than this percentage. This value defaults to0.0.

Usage:
-rare_words_pct 10

-regard_case

Specifywhether to regard the case of textual data. For example, if this option is
enabled, thenUSDandusdwill be treated the same.

Usage:
-regard_case on

-skip_bad_lines

Specifies to skips all bad linesencountered during the data conversion process. This is
similar to-ignore_missing, but this option still allows literalmissing values to be
imputed.

Usage:
-skip_bad_lines on

-sparse_columns

A comma-separated list of column numbers, column names, or rangesof columns
containing sparse data. Anall_columns keyword can also be specified.

Usage:
-sparse_columns 11,12

-sparse_suggest_pct

Suggest columnsbemade sparse if ratio of zerosor missing valuesexceeds this
percentage. For example, if this value is50, then the output will indicate any columns
for which the ratio of zero to non-zero valuesexceeds50 percent.

Usage:
-sparse_suggest_pact 30

-stop_words_pct

Filter wordsmore frequent than this percentage. This value defaults to100.0.

Usage:
-stop_words 10

-target_index

The column number or column name of the regression target.

Usage:
-target_index 1

Table 47: Hadoop Data Preparation Options (continued)
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-trailing_delimiter

This flag signals that each row hasa trailing delimiter. This can be automatically
determined unlessmissing valuesare indicated by the empty string.

Usage:
-trailing_delimiter on

-use_column_names

Use column names from the first line of the first input file. This implies that-ignore_
lines for that file is at least 1.

Usage:
-use_column_names on

-use_column_weights

Use a comma-delimited weights file in the input director to assign weights to columns.
If this option is specified, then all input directoriesmust have a "_weights" file.

Usage:
-use_column_weights on

-words_columns

For each possible word in the specified column, this parameter createsa notional
column in the output.st file. The entrywill be1 if the word occurs in a row, and0 if it
doesnot. Becausemost rowsdon't contain anyparticular word, the columnsare
alwaysmade sparse. (That is, there is one entry for each word that occurs; otherwise
the column is not represented in the output.)

Usage:
-words_columns 6

Table 47: Hadoop Data Preparation Options (continued)

Kernel Density Estimation Options

The following table shows the options available in the kde module.

Command Description

--bandwidth

REQURED. Specify the kernel bandwidth. Youmust provide either the same number
of--bandwidthoptionsas classes in--labels_in, or just one bandwidth to be
used for all classes.

Usage:
--bandwidth 0.75

--densities_out

Optionally specify a file to store computed densities.

Usage:
--densities_out random.densities

--kernel

Specify the function used byKDE/KDA. Enter either epan (default) or gaussian.

Usage:
--kernel gaussian

Table 48: KDE Options
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--labels_in
Optionally specify the file containing reference labels.

Usage:
--labels_in reference.labels.st

--labels_out

Optionally specify a file to store classification resultswhen running KDA.

Usage:
--labels_out reference.labels

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--prior

Optionally specify priors for use with KDA. Include asmany--prioroption as there
are classes in--labels_in. Otherwise, if omitted, KDAassumespriors equal to
class ratios.

Usage:
--prior 2

--probabilities_out

Optionally specify a file to store computed classprobabilitieswhen running KDE.

Usage:
--probabilities_out probabilities

--queries_in

Optionally specify a file containing query positions. If omitted, KDE/KDAworks in
"leave-one-out" mode, where every point of the reference set is treated asa query
point and its density is computed byexcluding the contribution of the point itself.

Usage:
--queries_in random_queries.st

--references_in

REQUIRED. Specify the file containing reference data.

Usage:
--references_in random_1kx6.st

--relative_error

Maximum relative error for the approximation of KDE/KDA.

Usage:
--relative_error 0.1

Table 48: KDE Options (continued)
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k-means Options

The following tables show the options available in the kmeans module.

Command Description

--centroids_in

Specify the initial set of centroids for --run_mode=train, or centroids for --run_
mode=eval (in which case, it is required)

Usage:
--run_mode eval \
--centroids_in centroids.st

--queries_in

REQUIRED when--run_mode=eval. Specify the file containing the data to be
assigned to given clusters.

Usage:
--run_mode eval \
--queries_in sdss.test.st

--references_in

REQUIRED when--run_mode=train. Specify the file containing data to be
clustered.

Usage:
--run_mode train \
--references_in 3gaussians.st

Table 49: k-means Input Data Options

Command Description

--centroids_out

Optionally specify a file to store cluster means. This cannot be used in conjunction with
--k_minand--k_max.

Usage:
--centroids_out centroids.st

--coreset_out

REQUIRED with--run_mode=coreset. The coreset will be output to this file.
Note that in this output, the points from the table retrain their IDs. Generated points,
however, will have an ID of-1, indicating that theyare not actual points in the dataset.

Usage:
--run_mode coreset \
--coreset_out cores.st

--coreset_size

Can be used with--run_mode=coreset. This option specifies the desired size of
the coreset output in termsof a fraction of the size of the original data. The coreset size
should be >0and <1. This value defaults to0.01.

Usage:
--run_mode coreset \
--coreset_out cores.st \
--coreset_size 0.05

Table 50: k-means Output Data Options

Appendix B Command Reference Confidential Skytree Server User Guide | 277



Command Description

--distortions_out

Optionally specify a file to store the SQUARED distance to the closest centroid for
every point. This cannot be used in conjunction with--k_minand--k_max.

Usage:
--distortions_out distortions.st

--memberships_out

Optionally specify a file to store cluster memberships. This cannot be used in
conjunction with--k_minand--k_max.

Usage:
--memberships_out assignments.st

--output_with_ids

If enabled, the per-point output for --memberships_outand
--distortions_outwill be prepended with the input file's "id" meta field followed
bya comma. For example, if the original output is "a,b,c" then the new output would
be "ID,a,b,c" where "ID" is an integer (1, -1). If an "id" meta field is not
available in the input, then "0" is set as the input "id" field (for example, "0,a,b,c").

This option is disabled bydefault and requires--memberships_outand/or
--distortions_out.

Usage:
--memberships_out assignments.st
--output_with_ids on

--progressfile

Specify a file to report the progress in percents in. This option can only be used in non-
distributedmode.

Usage:
--progressfile DataCluster

Table 50: k-means Output Data Options (continued)

Command Description

--algorithm

Algorithm used to compute clusters. Specify one of the following:

• online: online k-means (single host only)

• online_fast: online k-means followed by fast k-means (single host
only)

• online_lloyds: online k-means and followed by Lloyd's algorithm
(single host only)

• fast: fast k-means (multiple hosts allowed) (default)

• lloyds: Lloyd's algorithm (multiple hosts allowed)

• online_naive: deprecated, use online_lloyds

• naive: deprecated, use lloyds

Usage:
--algorithm online_fast

Table 51: k-means Options
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--clust_movement_thresh

If in any iteration the largest cluster motion is less than this absolute threshold,
k-meanswill terminate. A value of0.0 (default) means that k-meanswill run until full
convergence is reached (typically to a localminimum).

Usage:
--clust_movement_thresh 0.05

--compression

Specifywhether to use compression for data. This option reduces computational
resource requirements. This value defaults to on.

Note: Unlike other commands, the= symbol ismandatorywhen specifying this option.

Usage:
--compression=off

--epochs

For --algorithm=online*, specify the number of passes through the entire
dataset. This value defaults to1.

Usage:
--algorithm online_fast \
--epochs 4

--initialization

Choose one of the following options to initialize the centroids:

• random: pick random points from the dataset (default)

• kmeans++: compute initial centroids with kmeans++

Usage:
--initialization kmeans++

--initialization_seed

Random number generator seed used for centroid initialization. If omitted, a time-
based seed will be used. Results are only reproducible when the same number of
hosts is used.

Usage:
--initialization_seed 2

--iterations

K-means can run in either batch or progressivemode. Use this option to restrict the
number of iterationsof the batchmode. If--iterations=i is omitted, k-means
findsexact clusters; otherwise, it terminatesafter iprogressive refinements.

Usage:
--iterations 2

--k_clusters

Specify the number of clusters for k-means. This valuemust be greater than1. To
scan for optimum number of clusters, you can use--k_minand--k_max instead
of--k_clusters.

Usage:
--k_clusters 10

Table 51: k-means Options (continued)
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--k_max

Specify themaximum number of clusterswhen scanning for the optimal number of
clusters. Must be used in conjunction with--k_minand be greater than--k_min.
This option cannot be used with multiple hosts. This option also cannot be used with
--memberships_outor --distortions_out. If--k_minand--k_max
are not set, then--k_clusters will be used.

Usage:
--k_min 2 \
--k_max 10 \
--k_step 1

--k_min

Specify theminimum number of clusterswhen scanning for optimal number of
clusters. Must be used in conjunction with--k_maxand be greater than1. This
option cannot be used with multiple hosts. This option also cannot be used with
--memberships_outor --distortions_out. If--k_minand--k_max
are not set, then--k_clusters will be used.

Usage:
--k_min 2 \
--k_max 10 \
--k_step 1

--k_step

Step size for number of clusterswhen scanning for optimal number of clusters. Must
be greater than0. This option is used only in conjunction with--k_minand--k_
max. This option defaults to 1.

Usage:
--k_min 2 \
--k_max 10 \
--k_step 1

--n_restarts

Specify the number for restarts per k-means training. This can lower the distortion
when random initialization of centroids is used. This value defaults to1.

Usage:
--n_restarts 10

--online_batch_size

For --algorithm=online*, specify the number of points read in each epoch. If
not provided, then the entire dataset is used.

Usage:
--algorithm online_lloyds \
--onlinebatch_size 4

--percentage_hold_out

Specify the percentage of the dataset held out asa validation set when searching for
the best number of clusters using--k_minand--k_max. The value of this
percentage corresponds to a fraction and should be between0and1. This value
defaults to0.2.

Usage:
--k_min 2 \
--k_max 10 \
--k_step 1 \
--percentage_hold_out 0.25

--probability This option is deprecated and will have no effect. It maybe removed in a future
release.

Table 51: k-means Options (continued)
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--randomize

Specifywhether to randomize the input point order. For k-means in onlinemode, it is
important to have randomized (i.i.d) data. You can safely turn this flag off if you
know that your data is alreadyi.i.d. This value defaults toon.

Usage:
--randomize off

--run_mode

Specify one of the following for the operatingmode.

• train: find optimal clusters for given reference points and number of
clusters (default)

• eval : find cluster memberships for given query points and centroids

• coreset : generate a coreset of the given reference points

Usage:
--run_mode eval

Table 51: k-means Options (continued)

Command Description

--fast_read

If set, disable verbose input checks for faster file reads. This option defaults to off.

Usage:
--fast_read on

--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server. This option is available for --algorithm=fast (default) and
--algorithm=lloyds.

Usage:
--algorithm lloyds \
--hosts localhost,127.0.0.1

--input_file

If given, load input options from this file.

Usage:
--input_file input

--log

If given, write log to this file instead of stdout.

Usage:
--log log_run

Table 52: General k-means Options
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--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

--threads

Optionally specify the number of per-process threads. For single host execution, the
default number of threads is set to themaximum available on the host. In distributed
mode, the number of threadsavailable to each host is the smallest maximum available
number of threadsamong the hosts. For example, if--hosts=host1,host2 is
specified and hosts "host1" and "host2" have, respectively, 4 and 8 threadsavailable, 4
threadswill be used for each process.

Usage:
--threads 16

--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to 1.5.

Usage:
--watchdog_high_load_threshold 1

--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to 0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 52: General k-means Options (continued)

Linear Regression Options

The following table shows the options available in the linear module.
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--adj_r_squared_out

Specify the output file for the adjusted r-squared value.

Usage:
--adj_r_squared_out adjusted_r_squared.st

--algorithm

The type of algorithm to use. Specify either fast (default) or naive.

Usage:
--algorithm naive

--coeffs_in

Specify the input file for the coefficients.

Usage:
--coeffs_in coefficients.st

--coeffs_in_bias_term_index

When--run_mode=eval this tells the indexposition of the bias term if present in
the input coefficients. Set to-1 if not present.

Usage:
--run_mode eval \
--coeffs_in_bias_term_index -2

--coeffs_out

The output file for the coefficients.

Usage:
--coeffs_out coefficients_out.st

--conf_his_out

Specify the output file for the upper bound for the confidence intervals.

Usage:
--conf_his_out confidence_band_highs.st

--conf_los_out

Specify the output file for the lower bound for the confidence intervals.

Usage:
--conf_los_out confidence_band_lows.st

--conf_prob

Specifies the probability coverage of the confidence intervals. This value defaults to
0.9.

Usage:
--conf_prob 0.5

--correlation_pruning

If enabled, the correlation coefficient should be used for initial pruning. This option is
disabled bydefault.

Usage:
--correlation_pruning on

--correlation_threshold

During the correlation pruning, each attribute will be pruned if it hasan absolute
correlation factor greater than this value with anyother attributes. This option defaults
to0.9.

Usage:
--correlation_threshold 0.7

Table 53: Linear Regression Options
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--exclude_bias_term

If enabled, the bias termwill not be included in the linear model. This option is disabled
bydefault.

Usage:
--exclude_bias_term on

--f_statistic_out

Specify the output file for the f-statistics.

Usage:
--f_statistics_out f_statistic

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--output_statistics

Specifywhether to output the statistics that describe the quality of themodel. This
option is disabled bydefault.

Usage:
--output_statistics on

--p_values_out

Specify the output file for the p values.

Usage:
--p_values_out p_values.st

--prediction_index

Specify the indexof the column containing prediction targets. This value defaults to0.
In this case, the first attribute is used.

Usage:
--prediction_index 1

--predictions_out

When--run_mode=eval, this file will contain the predictionson the query data.

Usage:
--run_mode eval \
--predictions_out predictions.st

Table 53: Linear Regression Options (continued)
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--queries_in

Specify the data file containing the test set to be evaluated. This isREQUIRED when
--run_mode=eval.

Usage:
--run_mode eval \
--queries_in random_1kx6.st

--r_squared_out

Specify the output file for the r-squared value.

Usage:
--r_squared_out r_squared.st

--references_in

Specify the data file containing the predictors and the predictions. This isREQUIRED
when--run_mode=train, which is the default for --run_mode.

Usage:
--run_mode train \
--references_in sample_promo.st

--run_mode

Specify one of the following options for the operatingmode.

• train: find optimal set of linear regression coefficients (default)

• eval: given coefficients, predict on a set of query points specified by
--queries_in

Usage:
--run_mode eval \
--queries_in random_1kx6.st

--sigma_out

Specify the output file for the sigma.

Usage:
--sigma_out sigma.st

--std_errors_out

Specify the output file for the standard errors.

Usage:
--std_errors_out std_errors.st

--stepdirection

The direction of stepwise regression. Specify one of the following:

• bidir: use bidirectional stepwise optimization (default)

• forward: use forward stepwise optimization

• backward: use backward stepwise optimization

Usage:
--stepdirection forward

--stepwise

If enabled, the stepwise regression should be used after VIF selection. This option is
disabled bydefault.

Usage:
--stepwise on

Table 53: Linear Regression Options (continued)
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--stepwise_threshold

Specify aminimum required improvement in the score needed during stepwise
regression in order to continue the selection.This value defaults to0.

Usage:
--stepwise_threshold 0.5

--t_values_out

Specify the output file for the t values.

Usage:
--t_values_out t_values.st

--vif_threshold

During the pruning stage via variance inflation factor, each attribute will be pruned if
the threshold exceeds this value. This value defaults to8.

Usage:
--vif_threshold 5.0

Table 53: Linear Regression Options (continued)

Logistic Regression Options

The following tables show the options available in the logistic module.

Command Description

--coefficients_in

Specify the input file for coefficientswhen not training.

Usage:
--coefficients_in coeffs.st

--coefficients_out

Specify the output file for coefficientswhen training.

Usage:
--coeffecients_out coeffs

--exclude_bias_term

Specifywhether an intercept term (or bias term) is to be used in the regression. This
option is disabled bydefault.

Usage:
--exclude_bias_term on

--iterations

Specify the number of iterations to perform.Must be >=1. If this option is not specified,
then the processwill iterate until convergence.

Usage:
--iterations 2

--labels_out

Specify the output file for labels for the test dataset.

Usage:
--labels_out sdss.test.labels.out

Table 54: Logistic Regression Options
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--probabilities_out

Specify the output file for probabilities for the test dataset.

Usage:
--probabilities_out sdss.test.probabilities

--regularization

Skytree Server logistic regression is L1-regularized. The default value for the
regularization term is set to 1e −6. Use this option to change the regularization value.
Specify the regularization parameter. Higher values can be used to ensure under-fit
models that maysuit the problem better. But note that altering the regularization term
will penalize the L1-norm of the coefficients in the logistic regression.

Usage:
--regularization 0.001

--testing_in

Optionally specify a file containing the testing data.

Usage:
--testing_in sdss.test.st

--training_in

Specify a file containing the training data.

Usage:
--training_in sdss.train.st

--training_labels_in

Specify a file containing the class labels of the training data.

Usage:
--training_labels_in sdss.train.labels

Table 54: Logistic Regression Options (continued)

Command Description

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

Table 55: General Logistic Regression Options
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--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 55: General Logistic Regression Options (continued)

Network Tester Options

The following table shows the options available in the network-tester module.

Command Description

--blocking

Optionally specifywhether to use blockingMPI send/recv. This value defaults toon.

Usage:
--blocking off

--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server.

Usage:
--hosts localhost,127.0.0.1

--input_file

If given, load input options from this file.

Usage:
--input_file input

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

Table 56: Network Tester Options
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--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

--msg_size

Optionally specify themessage size. This option defaults to1048576.

Usage:
--msg_size 2097152

--reps

Optionally specify a number of repetitions. This value defaults to100.

Usage:
--reps 200

--sleep

Optionally specify the time in seconds to sleep between repetitions. This option is
turned off (--sleep=0) by default.

Usage:
--sleep 2

Table 56: Network Tester Options (continued)

Nearest Neighbors Options

The following table shows the options available in the nn module.

Command Description

--algorithm

Specify the algorithm to find nearest neighbors. Specifynaive,fast, or fastest
(default).

Usage:
--algorithm naive

Table 57: NN Options
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--distances_out

Optionally specify a file to store found neighbor distances (not the squared distances).

Usage:
--distances_out distances

--fast_read

If set, disable verbose input checks for faster file reads. This option is disabled by
default.

Usage:
--fast_read on

--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server.

Usage:
--hosts localhost,127.0.0.1

--indices_out

Optionally specify a file to store found neighbor indices

Usage:
--indices_out neighbors

--k_neighbors

REQUIRED. Specify the number of neighbors to use for scoring/classification.

Usage:
--k_neighbors 5

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

Table 57: NN Options (continued)
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--queries_in

Optionally specify a file containing nearest neighbor search queries. If omitted,
--references_in is used.

Usage:
--queries_in random_1kx6.st

--references_in

REQUIRED file containing the input data.

Usage:
--references_in random_1kx6.st

--threads

Optionally specify the number of per-process threads. For single host execution, the
default number of threads is set to themaximum available on the host. In distributed
mode, the number of threadsavailable to each host is the smallest maximum available
number of threadsamong the hosts. For example, if--hosts=host1,host2 is
specified and hosts "host1" and "host2" have, respectively, 4 and 8 threadsavailable, 4
threadswill be used for each process.

Usage:
--threads 16

--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 57: NN Options (continued)

Nearest Neighbors Classification Options

The following table shows the options available in the nnc module.

Command Description

--algorithm

Specify the algorithm to find nearest neighbors. Specifynaive,fast, or fastest
(default).

Usage:
--algorithm naive

Table 58: NNC Options
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--alpha

Specify an optional approximation parameter 1 when performing alpha-beta
approximation. This option specifies the accuracyandmust be in the range (0, 1).
Larger --alphaand--betawill improve accuracy somewhat, though smaller
valuesare key for speed.

Usage:
--alpha 0.2 \
--beta 5

--alpha_beta_random_seed

Optionally specify the random number seed used for alpha-beta approximation. This
option is used only in conjunction with--alpha. If omitted, the current time is used.

Usage:
--alpha 0.2 \
--beta 5 \
--alpha_beta_random_seed 123

--beta

Specify an optional approximation parameter 2 when performing alpha-beta
approximation. This parameter specifies howmanysamplesare taken andmust be at
least1. Larger --alphaand--betawill improve accuracy somewhat, though
smaller valuesare key for speed.

Usage:
--alpha 0.2 \
--beta 5

--classification_objective

Optionally specify an objective for classification threshold tuning, either 'accuracy' or
'fscore' (default). This option cannot be used in conjunction with
--probability_threshold.

Usage:
--classification_objective accuracy

--classweight

Optionally specify the classweight for use with nearest neighbor classification. This
option impacts the scoresand probabilities. Youmust repeat the--classweight
option for each class in--training_labels_in. If omitted, classweights of1
are assumed for every class.

Usage:
--training_labels_in sdss.train.labels \
--classweight 10 \
--classweight 1

--compression

Specifywhether to use compression for data. Enabling this (default) reduces
computational resource requirements.

Note: Unlike other commands, the= symbol ismandatorywhen specifying this option.

Usage:
--compression=off

Table 58: NNC Options (continued)
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--curve

Specifies the type of curve used for AUC/Gini calculation. Specify one of the following:

• roc: Receiver Operations Curve (ROC) (default):

▪ x-axis: false positive rate

▪ y-axis: true positive rate (capture rate)

• lorenz: Lorenz curve.

▪ x-axis: percentile

▪ y-axis: true positive rate (capture rate)

Usage:
--curve lorenz

--distances_out

Optionally specify a file to store found neighbor distances (not the squared distances).

Usage:
--distances_out distances

--explore_persistence

Optionally specify a value to set the persistence of the exploremethod. This is only
used in conjunction with--metric_learning_method=explore. This value
defaults to0.2andmust be between0and1.

Usage:
--metric_learning_method explore \
--explore_scales_in explore_scales \
--explore_persistence 0.3

--explore_scales_in

Optionally specify a file containing scaling factors for each dimension. Only used in
conjunction with--metric_learning_method=explore.

Usage:
--metric_learning_method explore \
--explore_scales_in explore_scales \
--explore_persistence 0.3

--fast_read

If set, disable verbose input checks for faster file reads. This option is disabled by
default.

Usage:
--fast_read on

--fit_method

Specify the fittingmethod used for --fit_metric_weightsand/or --metric_
learning_method={forward_fit,backward_fit}. Set to1 (default) or
2.

Usage:
--fit_method 2

--fit_metric_weights

If set, fit initialmetricweights. This option is disabled bydefault.

Usage:
--ft_metric_weights on

Table 58: NNC Options (continued)
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--fit_metric_weights_out

Optionally specify a file for outputting the fit metricweights. This is used only in
conjunction with--fit_metric_weights.

Usage:
--fit_metric_weights on \
--fit_metric_weights_out fitweights.csv

--fit_reg

Control parameter for fit method. Use a small positive number between 0 and 1. This
value is set to 1e −6 bydefault. This is only used in conjunction with--fit_
method=2.

Usage:
--fit_method 2 \
--fit_reg 0.02

--fit_threshold

Specify an optional threshold value for pruning fittedmetricweights. The fit threshold
prunesdimensions that seem unhelpful byweighting them to 0. Lower valuesare
more aggressive. Set to0 to disable. Bydefault--fit_threshold=8.0 for --
fit_metric_weightsbut is disabled for --metric_learning_
method=forward_fit. This option is only used when--fit_method=1.

Usage:
--fit_method 1 \
--fit_metric_weights on \
--fit_threshold 4

--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server.

Usage:
--hosts localhost,127.0.0.1

--indices_out

Optionally specify a file to store found neighbor indices

Usage:
--indices_out neighbors

--k_neighbors

REQUIRED. Specify the number of neighbors to use for scoring/classification.

Usage:
--k_neighbors 5

--labels_out

Optionally specify a file to output the computed classification labels.

Usage:
--labels_out labels

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

Table 58: NNC Options (continued)
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--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--memory_usage

Specify themaximum fraction of systemmemory to use in the range [0.0,1.0]. If set
to0.0, automaticmemorymanagement is disabled. Bydefault, Skytree Server
makesan effort not to exceed 75%of its host system’smemory, breaking computation
into smaller chunks if necessary.

Usage:
--memory_usage 0.80

--metric_learning

Specifywhether to performmetric learning. This option is disabled bydefault.

Usage:
--metric_learning on

--metric_learning_iterations

Specify the number of iterations for metric learning. This value defaults to10and is
only used for --metric_learning_method={random,explore}.

Usage:
--metric_learning on \
--metric_learning_method random \
--metric_learning_iterations 20 \

--metric_learning_method

Specify themethod used for metric learning. This is only used in conjunction with--
metric_learning. Specify one of the following:

• forward

• forward_fit (default)

• backward

• backward_fit

• explore

• random

Usage:
--metric_learning on \
--metric_learning_method explore

Table 58: NNC Options (continued)
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--metric_learning_min_dim_
ratio

Parameter for --metric_learning_method={backward,backward_
fit}. Specifies the fractional dimensionality at which to end
backward/backward_fitmetric learning. This option defaults to0andmust be
in the range (0-1). A value of0.5, for example, would specify that the lowest
dimensionality to be tried is half the number of full dimensions.

Usage:
--metric_learning on \
--metric_learning_method backward \
--metric_learning_min_dim_ratio 0.5

--metric_learning_objective

Specify one of the following objectives for tuning:

• gini (default)

• fscore

• accuracy

• capturedev

Usage:
--metric_learning on \
--metric_learning_objective fscore

--metric_learning_random_seed

Optionally specify a random number seed used for metric learning. This is used only in
conjunction with--metric_learning_method=
{random,explore,forward_fit}. For forwardandforward_fit, this
parameter is only used if--metric_learning_min_dim_ratio>0. If
omitted, the current time is used.

Usage:
--metric_learning on \
--metric_learning_method forward_fit \
--metric_learning_min_dim_ratio 0.5 \
--metric_learning_random_seed 123

--metric_weights_in

Optionally specify a file containing themetricweights. Must have asmanyvaluesas
there are dimensions.

Usage:
--metric_weights random.csv

--optimal_metric_weights_out

Optionally specify a file for outputting the optimalmetricweights. Only used in
conjunction with--metric_learning.

Usage:
--metric_learning on \
--optimal_metric_weights_out back.csv

--percentiles_in

Optionally specify a file containing a single line with percentile numbers (e.g.,0.5 1
5 10 20 30 50 100) to be used as sampling positions for AUC calculations from
the ROC/Lorenz curve. A low percentile value refers to high scores. If omitted, all data
points are used for integration, yielding themost accurate results.

Usage:
--percentiles_in percentiles

Table 58: NNC Options (continued)
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--probabilities_out

Optionally specify a file to output the computed classprobabilities.

Usage:
--probabilities_out probabilities.nnc

--probability_threshold

Specify an optional probability to be used as the threshold for classification. Cannot be
used in conjunction with--classification_objective.

Usage:
--probability_threshold 0.82082089

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

--rank_error_prob

Optionally specify a probability (between0and1) with which the rankerror is
guaranteed. Can only be used in conjunction with--rank_error_tol.

Usage:
--rank_error_tol 0.05 \
--rank_error_prob 0.9

--rank_error_random_seed

Optionally specify a random number seed used for rankapproximation. Only used in
conjunction with--rank_error_tol. If omitted, the current time is used.

Usage:
--rank_error_tol 0.05 \
--rank_error_random_seed 123

--rank_error_tol

Optionally specify the rankerror tolerance (asa fraction of all neighbors). Specify a
value between0and1. The neighbors found will have a rankerror of less than
--rank_error_tol times the number of all neighbors, guaranteed with the
probability given by--rank_error_prob. Larger valuesof--rank_error_
tolwill lead to greater speedups.

Usage:
--rank_error_tol 0.05 \
--rank_error_prob 0.9

--sample_with_replacement

For each tree, sample the training points using replacement (bootstrap). This option is
onbydefault. If turned off,--sampling_ratiomust be provided.

Usage:
--sample_with_replacement off \
--sampling_ratio 0.25

Table 58: NNC Options (continued)
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--sampling_ratio

Per class sampling ratio. Youmust either specify a single--sampling_ratio that
will be used for each class, or repeat the--sampling_ratiooption for each class
in--training_labels_in. If omitted with--sample_with_
replacement=on, full bootstrapping will be used. If--sample_with_
replacement=off, then this option ismandatory.

Usage:
--training_labels_in income.labels \
--sampling_ratio 0.25 \
--sampling_ratio 2

--scores_out

Optionally specify a file to output the computed classification scores.

Usage:
--scores_out scores.nn

--scoreweight

Optionally specify the score weight for use with nearest neighbor classification. This
value will affect the probabilities. Youmust repeat the--scoreweightoption for
each class in--training_labels_in. If omitted, score weights of1are
assumed for every class.

Usage:
--scoreweight 5

--smoothing

Specify the probability smoothing parameter. Must be >0. Disabled if set to0.0
(default).

Usage:
--smoothing 0.001,0.01

--table_sampling_seed

Optionally specify a random number seed used for table sampling. If omitted, the
current time is used.

Usage:
--table_sampling_seed 1359937539

--testing_in

Optionally specify a file containing the testing data.

Usage:
--testing_in sdss_test.st

--threads

Optionally specify the number of per-process threads. For single host execution, the
default number of threads is set to themaximum available on the host. In distributed
mode, the number of threadsavailable to each host is the smallest maximum available
number of threadsamong the hosts. For example, if--hosts=host1,host2 is
specified and hosts "host1" and "host2" have, respectively, 4 and 8 threadsavailable, 4
threadswill be used for each process.

Usage:
--threads 16

--training_in

REQUIRED. Specify the file containing the training data.

Usage:
--training_in sdss.train.st

Table 58: NNC Options (continued)
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--training_labels_in

REQUIRED. Specify the file containing the class labels of the training data.

Usage:
--training_labels_in sdss.train.labels

--tuning_in

Optionally specify a file containing the tuning data. Cannot be provided together with
--num_foldsor --holdout_ratio. If specified, then--tuning_labels_
inmust also be specified.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels

--tuning_labels_in

If--tuning_in is specified, then also specify a file containing the labels of the tuning
data.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels

--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 58: NNC Options (continued)

Nearest Neighbors Plus Options

The following table shows the options available in the nnplus module.

Command Description

--algorithm

Specify the algorithm to find nearest neighbors. Specifynaive,fast, or fastest
(default).

Usage:
--algorithm naive

Table 59: NN Plus Options
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--alpha

Specify an optional approximation parameter 1 when performing alpha-beta
approximation. This option specifies the accuracyandmust be in the range (0, 1).
Larger --alphaand--betawill improve accuracy somewhat, though smaller
valuesare key for speed.

Usage:
--alpha 0.2 \
--beta 5

--alpha_beta_random_seed

Optionally specify the random number seed used for alpha-beta approximation. This
option is used only in conjunction with--alpha. If omitted, the current time is used.

Usage:
--alpha 0.2 \
--beta 5 \
--alpha_beta_random_seed 123

--beta

Specify an optional approximation parameter 2 when performing alpha-beta
approximation. This parameter specifies howmanysamplesare taken andmust be at
least 1. Larger --alphaand--betawill improve accuracy somewhat, though
smaller valuesare key for speed.

Usage:
--alpha 0.2 \
--beta 5

--compression

Specifywhether to use compression for data. Enabling this (default) reduces
computational resource requirements.

Note: Unlike other commands, the= symbol ismandatorywhen specifying this option.

Usage:
--compression=off

--distances_out

Optionally specify a file to store found neighbor distances (not the squared distances).

Usage:
--distances_out distances

--fast_read

If set, disable verbose input checks for faster file reads. This option is disabled by
default.

Usage:
--fast_read on

--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server.

Usage:
--hosts localhost,127.0.0.1

--indices_out

Optionally specify a file to store found neighbor indices

Usage:
--indices_out neighbors

Table 59: NN Plus Options (continued)
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--k_neighbors

REQUIRED. Specify the number of neighbors to use for scoring/classification.

Usage:
--k_neighbors 5

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--memory_usage

Specify themaximum fraction of systemmemory to use in the range[0.0,1.0]. If
set to0.0, automaticmemorymanagement is disabled. Bydefault, Skytree Server
makesan effort not to exceed 75%of its host system’smemory, breaking computation
into smaller chunks if necessary.

Usage:
--memory_usage 0.80

--metric_weights_in

Optionally specify a file containing themetricweights. Must have asmanyvaluesas
there are dimensions.

Usage:
--metric_weights random.csv

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

--queries_in

Optionally specify a file containing nearest neighbor search queries. If omitted,
--references_in is used.

Usage:
--queries_in random_1kx6.st

Table 59: NN Plus Options (continued)
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--rank_error_prob

Optionally specify a probability (between 0 and 1) with which the rankerror is
guaranteed. Can only be used in conjunction with--rank_error_tol.

Usage:
--rank_error_tol 0.05 \
--rank_error_prob 0.9

--rank_error_random_seed

Optionally specify a random number seed used for rankapproximation. Only used in
conjunction with--rank_error_tol. If omitted, the current time is used.

Usage:
--rank_error_tol 0.05 \
--rank_error_random_seed 123

--rank_error_tol

Optionally specify the rankerror tolerance (asa fraction of all neighbors). Specify a
value between0and1. The neighbors found will have a rankerror of less than
--rank_error_tol times the number of all neighbors, guaranteed with the
probability given by--rank_error_prob. Larger valuesof--rank_error_
tolwill lead to greater speedups.

Usage:
--rank_error_tol 0.05 \
--rank_error_prob 0.9

--references_in

REQUIRED file containing the input data.

Usage:
--references_in random_1kx6.st

--threads

Number of threads to use. This value defaults to24.

Usage:
--threads 32

--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 59: NN Plus Options (continued)

Random Decision Forests Options

The following tables show the options available in the rdf module.
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--batch_size

Specify the batch size for streamed test points. A larger batch size can increase
throughput but also increase latency. This value defaults to1.

Usage:
--batch_size 2

--classweight

Specify a value for classweights.When used, youmust repeat the--classweight
option for each class in--training_labels_in. The valuesare used to
artificially inflate the impact of the corresponding class. If omitted, classweights of1are
assumed for every class.

Usage:
--training_labels_in sdss.train.labels \
--classweight 10 \
--classweight 1

--model_in

Optionally specify a file fromwhich to load themodel.

Usage:
--model_in model

--port

Optionally specify a port number for streaming test data. Must be >=1024 if specified.

Usage:
--port 10000

--testing_in

Optionally specify a file containing the testing data.

Usage:
--testing_in sdss_test.st

--training_in

REQUIRED. Specify the file containing the training data.

Usage:
--training_in sdss.train.st

--training_labels_in

REQUIRED. Specify the file containing the class labels of the training data.

Usage:
--training_labels_in sdss.train.labels

--training_point_weights_in

Optionally specify a file containing the point weights (for training amodel) for each
point in--training_in. Bydefault, each training point gets a point weight of1.

Usage:
--training_point_weights_in income.weights

--training_score_weights_in

When evaluating amodel, optionally specify a file containing the score weights for each
point in--training_in. Bydefault, each point in--training_ingets a score
weight of 1.--training_score_weights_inwill only be used if--tuning_
in is not provided and you use a holdout from the--training_in for tuning.
Please specify--tuning_score_weights_in to tune on--tuning_inwith
score weights.

Usage:
--training_score_weights_in income.weights

Table 60: RDF Input Data Options
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--yield_values_in

Optionally specify the file used to calculate yield valuesduring tuning. Thismust be the
same length aseither the training or tuning vector, depending on whether you are
using holdouts or a tuning table.

Note that if--testing_objective=yield is specified, then this option is
required, and its value will be used to determine the best model.

Usage:
--yield_values_in income.yield.st

Table 60: RDF Input Data Options (continued)

Command Description

--holdout_ratio

Optionally specify the fraction of the table to be held out for tuning.

Usage:
--holdout_ratio 0.2

--holdout_seed

Optionally specify the holdout sampling random number seed. This value also serves
as the seed for --num_folds. If omitted, a time-based seed will be used.

Usage:
--holdout_seed 2

--num_folds

Optionally specify the number of folds for k-fold cross-validation. If--holdout_
ratio is also specified, thenMonte Carlo cross-validation (with randomlydrawn
holdout sets) is instead performedwith the specified number of restarts.

Usage:
--num_folds 10

--tuning_in

Optionally specify a file containing the tuning data. Cannot be provided together with
--num_foldsor --holdout_ratio. If specified, then--tuning_labels_
inmust also be specified.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels

--tuning_labels_in

If--tuning_in is specified, then also specify a file containing the labels of the tuning
data.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels

Table 61: RDFModel Validation Options
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--tuning_models_out

File prefix for storage of all tuningmodels. Used only in conjunction with--tuning_
in. Note that this generatesa singlemodel file storing all of the trees tuned over rather
than generating separate lists. To limit the number of treeswhen using thismodel,
specify the--num_treesoption when loading thismodel.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels \
--tuning_models_out sdss.tune.models

--tuning_results_format

When outputting tuning results, specifywhether the format isCSVor JSON. This value
defaults toCSV.

Note: TheCSV format maychange. If your environment includesanyautomation that
relies on parsing this file, then we recommend using the extensibleJSON format.

Usage:
--tuning_results_out sdss.tune.results \
--tuning_results_format json

--tuning_results_out

Optionally specify a file to store all tuning results. Bydefault, the output format isCSV,
but this can be changed toJSON using--tuning_results_format.

Usage:
--tuning_results_out sdss.tune.results

--tuning_score_weights_in

Optionally specify a file containing the score weights for each of the tuning points. By
default, each tuning point gets a weight of1. Use this option with--tuning_in to
tune with score weights.

Usage:
--tuning_score_weights_in income.tune.weights

Table 61: RDFModel Validation Options (continued)

Command Description

--labels_out

Optionally specify a file to store computed labels.

Usage:
--labels_out results

--model_out

Optionally specify a file to store the trainedmodel.

Usage:
--model_out sdss.lsvm.model.0.1

Table 62: RDF Output Data Options
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--output_with_ids

If enabled, the per-point output for --labels_outand--probabilities_
outwill be prepended with the input file's "id" meta field followed bya comma. For
example, if the original output is "a,b,c" then the new output would be "ID,a,b,c"
where "ID" is an integer (1, -1). If an "id" meta field is not available in the input,
then "0" is set as the input "id" field (for example, "0,a,b,c").

This option is disabled bydefault.

Usage:
--output_with_ids on

--pmml_out

Specify the file name to use when exportingmodels to PMML format.

Notes:

• This option is not supported for multi-class classification in RDF.

• The PMML file that is produced requires that missing values are
encoded as '?'. This is a reserved symbol for missing values, and as
such, should not be used anywhere else in your data.

Usage:
--pmml_out income.pmml

--probabilities_out

Optionally specify a file to store computed probabilities.

Usage:
--probabilities_out sdss.test.probabilities

--split_importances_buckets

Optionally specify a number of buckets in split importance calculation. Must be > 1. This
value defaults to10.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--split_importances_out split.importances.out \
--split_importances_buckets 4

--split_importances_out

Optionally specify a file to store split importances. Requires--training_inand
one of--testing_inor --model_out.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--split_importances_out split_importances.out

--variable_importances_out

Optionally specify a file to store intrinsic variable importances. This output file includesa
single column. The first row is the importancesof the first column variable in the
--training_in .st file, the second row is the importance of the second column,
and so on. Requires--training_inand one of--testing_inor --model_
out.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--variable_importances_out variable_importances.out

Table 62: RDF Output Data Options (continued)
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--variable_importances_out_
as_json

This option specifies to write variable importancesasa JSON file. The output will
include feature names, attribute names, and column IDsalong with the importance.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--variable_importances_out variable_importances.out
--variable_importances_out_as_json on

Table 62: RDF Output Data Options (continued)

Command Description

--imbalance_scale

Relative size of all classeswith respect to the smallest class. Requires
--imbalance. If--imbalance is specified, then this value defaults to1.0.

Usage:
--imbalance \
--imbalance_scale 2

--num_dimensions

The number of dimensions to sample at each node. If omitted, (log2(D) + 1) is used,
whereD is the number of attributes.

Usage:
--num_dimensions 1:1:4

--num_trees

The number of trees in the ensemble. Must be >0.

Usage:
--num_trees 5:5:100

--sampling_ratio

Per class sampling ratio. Youmust either specify a single--sampling_ratio that
will be used for each class, or repeat the--sampling_ratiooption for each class
in--training_labels_in. If omitted with--sample_with_
replacement=on, full bootstrapping will be used. If--sample_with_
replacement=off, then this option ismandatory.

Usage:
--training_labels_in income.data.labels \
--sampling_ratio 0.25 \
--sampling_ratio 2

--smoothing

Probability smoothing parameter. Must be >=0. Smoothing is disabled when set to0.

Usage:
--smoothing 0,0.001,0.01

--tree_depth

The depth to which each ensemble is built. If set to0, treeswill be built to the fullest
extent.

Usage:
--tree_depth 0:2:10

Table 63: Tunable RDF Options. Specify a single value, comma-separated list, or <min>:<step size>:<max>.
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--cardinality_based_
dimension_sampling

Categorical dimensionswith larger number of unique values in a given node will have a
proportionately higher chance of being selected when sampling dimensions.
Continuous featuresare treated ashaving one unique value.Whenoff (default), all
dimensionshave an equal chance of being selected in dimension sampling.

Usage:
--cardinality_based_dimension_sampling on

--categorical_random_split_
threshold

If the number of categorical valuesexceeds this, then random splitting is attempted.
Large valueswill slow down training time considerably for exhaustive searchesof all
combinationsof O(2q-1). For binary classification problems, though, it isO(q) and,
therefore, can be set to larger values. This value defaults to4.

Usage:
--categorical_random_split_threshold 5

--categorical_random_split_
tries

The number of times to try random categorical splits. This value defaults to 10.

Usage:
--categorical_random_split_tries 8

--categorical_sampling_seed

Optionally specify the categorical values sampling random number seed. If omitted, a
time-based seed will be used.

Usage:
--categorical_sampling_seed 4

--categorical_selection_
method

Optionally specify one of the following:

• random

• random_exact (default)

• one_vs_all

• one_vs_all_random

• one_vs_all_exact

• exact

Usage:
--categorical_selection_method exact

--classification_objective

Optionally specify the objective for classification threshold tuning. Specify either
fscore (default) or accuracy. This option cannot be used in conjunction with
--probability_threshold.

Usage:
--classification_objective accuracy

--compression

Compression for data. Reduces computational resource requirements.

Note: Unlike other commands, the= symbol ismandatorywhen specifying this option.

Usage:
--compression=off

Table 64: RDF Options
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--dimension_sampling_seed

The dimension sampling random number seed. If omitted, a time-based seed will be
used.

Usage:
--dimensions_sampling_seed 10

--imbalance

If set, attempt to improve classification for imbalanced classes. Cannot be used in
conjunction with--sampling_ratio.

Usage:
--imbalance off

--impurity

The type of impurity used to generate the split. Specifyentropy (default),gini, or
misclassification.

Usage:
--impurity gini

--k_for_precision

Optionally specify kasa value between0and1 for precision at the top 100k-th
percentile. kdefaults to 0.1.

Usage:
--k_for_precision 0.2

--num_cached_trees

Optionally specify the number of simultaneously cached trees in the ensemble. Higher
values lead to higher memoryusage. Lower values result in lower memoryusage at
the expense of increased runtime. This value defaults to the number of available
threads.

Usage:
--num_cached_trees 6

--prob_aggregation_method

Method used for aggregation of individual tree predictions. Specify either voteor
average (default). Only used in conjunction with--testing_in.

Usage:
--testing_in sdss_test.st
--prob_aggregation_method vote

--probability_threshold

Optionally specify the probability to be used as the threshold for classification. Cannot
be used in conjunction with--classification_objectiveor --testing_
objective.

Usage:
--probability_threshold 0.8208208919380429

--sample_with_replacement

For each tree, sample the training points using replacement (bootstrap). This option is
on bydefault. If turnedoff,--sampling_ratiomust be provided.

Usage:
--sample_with_replacement off
--sampling_ratio 0.25

Table 64: RDF Options (continued)
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--table_sampling_seed

The data sampling random number seed. If omitted, a time-based seed will be used.

Usage:
--table_sampling_seed 1359937539

--testing_objective

Optionally specify the objective for selecting the test model from a set of tunedmodels.
Specify one of the following:

• gini (default)

• fscore

• accuracy

• capture_dev

• precision_at_k

• yield

Cannot be used in conjunction with--probability_threshold.

Note that ifyield is specified, then--yield_values_inmust also be specified.

Usage:
--testing_objective capture_dev

--use_gain_ratio

Optionally specifywhether to use information gain ratio vs. information gain asa
measure for split criterion. This value defaults toon.

Usage:
--use_gain_ratio off

Table 64: RDF Options (continued)

Command Description

--fast_read

If set, disable verbose input checks for faster file reads. This option defaults tooff.

Usage:
--fast_read on

--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server.

Usage:
--hosts localhost,127.0.0.1

--input_file

If given, load input options from this file.

Usage:
--input_file input

Table 65: General RDF Options
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--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--memory

Specifies the amount of memoryallocated for Skytree Server computation on each
host.When training, testing, or tuning via grid-search, if Skytree Server cannot
operate within the given amount of memory, it failswith an error message indicating
the amount of memory required for computation..

Usage:
--memory 10240

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

--threads

Optionally specify the number of per-process threads. For single host execution, the
default number of threads is set to themaximum available on the host. In distributed
mode, the number of threadsavailable to each host is the smallest maximum available
number of threadsamong the hosts. For example, if--hosts=host1,host2 is
specified and hosts "host1" and "host2" have, respectively, 4 and 8 threadsavailable, 4
threadswill be used for each process.

Usage:
--threads 16

--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

Table 65: General RDF Options (continued)
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--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 65: General RDF Options (continued)

Random Decision Forests Regression Options

The following tables show the options available in the rdfr module.

Command Description

--batch_size

Specify the batch size for streamed test points. A larger batch size can increase
throughput but also increase latency. This value defaults to1.

Usage:
--batch_size 2

--model_in

Optionally specify a file fromwhich to load themodel.

Usage:
--model_in model

--port

Optionally specify a port number for streaming test data. Must be >=1024 if specified.

Usage:
--port 10000

--training_in

REQUIRED. Specify the file containing the training data.

Usage:
--training_in kddcup.train.st

--training_point_weights_in

Optionally specify a file containing the point weights (for training amodel) for each
point in--training_in. Bydefault, each training point gets a point weight of 1.

Usage:
--training_point_weights_in kddcup.weights

--training_score_weights_in

When evaluating amodel, optionally specify a file containing the score weights for each
point in--training_in. Bydefault, each point in--training_ingets a score
weight of1.--training_score_weights_inwill only be used if--tuning_
in is not provided and you use a holdout from the--training_in for tuning.
Please specify--tuning_score_weights_in to tune on--tuning_inwith
score weights.

Usage:
--training_score_weights_in kddcup.weights

Table 66: RDFR Input Data Options
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--training_targets_in

REQUIRED. File containing the targets of the training data.

Usage:
--training_targets_in kddcup.targets

--testing_in

Optional file containing the testing data.

Usage:
--testing_in kddcup.test.st

Table 66: RDFR Input Data Options (continued)

Command Description

--holdout_ratio

Optionally specify the fraction of the table to be held out for tuning.

Usage:
--holdout_ratio 0.2

--holdout_seed

Optionally specify the holdout sampling random number seed. This value also serves
as the seed for --num_folds. If omitted, a time-based seed will be used.

Usage:
--holdout_seed 2

--num_folds

Optionally specify the number of folds for k-fold cross-validation. If--holdout_
ratio is also specified, thenMonte Carlo cross-validation (with randomlydrawn
holdout sets) is instead performedwith the specified number of restarts.

Usage:
--num_folds 10

--tuning_in

Optionally specify a file containing the tuning data. Cannot be provided together with
--num_foldsor --holdout_ratio. If specified, then--tuning_labels_
inmust also be specified.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels

--tuning_models_out

File prefix for storage of all tuningmodels. Used only in conjunction with--tuning_
in. Note that this generatesa singlemodel file storing all of the trees tuned over rather
than generating separate lists. To limit the number of treeswhen using thismodel,
specify the--num_treesoption when loading thismodel.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels \
--tuning_models_out sdss.tune.models

Table 67: RDFR Model Validation Options
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--tuning_results_format

When outputting tuning results, specifywhether the format isCSVor JSON. This value
defaults toCSV.

Note: TheCSV format maychange. If your environment includesanyautomation that
relies on parsing this file, then we recommend using the extensibleJSON format.

Usage:
--tuning_results_out sdss.tune.results \
--tuning_results_format json

--tuning_results_out

Optionally specify a file to store all tuning results. Bydefault, the output format isCSV,
but this can be changed toJSON using--tuning_results_format.

Usage:
--tuning_results_out sdss.tune.results

--tuning_score_weights_in

Optionally specify a file containing the score weights for each of the tuning points. By
default, each tuning point gets a weight of1. Use this option with--tuning_in to
tune with score weights.

Usage:
--tuning_score_weights_in income.tune.weights

--tuning_targets_in

Specify an file containing the targets of the tuning data. Required if--tuning_in is
provided.

Usage:
--tuning_in income.tune.st \
--tuning_targets_in income.tune.targets

Table 67: RDFR Model Validation Options (continued)

Command Description

--model_out

Optionally specify a file to store the trainedmodel.

Usage:
--model_out sdss.lsvm.model.0.1

--output_with_ids

If enabled, the per-point output for --targets_outwill be prepended with the
input file's "id" meta field followed bya comma. For example, if the original output is
"a,b,c" then the new output would be "ID,a,b,c" where "ID" is an integer (1,
-1). If an "id" meta field is not available in the input, then "0" is set as the input "id"
field (for example, "0,a,b,c").

This option is disabled bydefault.

Usage:
--output_with_ids on

Table 68: RDFR Output Data Options
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--pmml_out

Specify the file name to use when exportingmodels to PMML format.

Notes:

• This option is not supported for multi-class classification in RDF.

• The PMML file that is produced requires that missing values are
encoded as '?'. This is a reserved symbol for missing values, and as
such, should not be used anywhere else in your data.

Usage:
--pmml_out income.pmml

--split_importances_buckets

Optionally specify a number of buckets in split importance calculation. Must be >1. This
value defaults to10.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--split_importances_out split.importances.out \
--split_importances_buckets 4

--split_importances_out

Optionally specify a file to store split importances. Requires--training_inand
one of--testing_inor --model_out.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--split_importances_out split_importances.out

--targets_out

Optionally specify a file to store computed targets.

Usage:
--targets_out targets.rdfr

--variable_importances_out

Optionally specify a file to store intrinsic variable importances. This output file includesa
single column. The first row is the importancesof the first column variable in the
--training_in .st file, the second row is the importance of the second column,
and so on. Requires--training_inand one of--testing_inor --model_
out.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--variable_importances_out variable_importances.out

--variable_importances_out_
as_json

This option specifies to write variable importancesasa JSON file. The output will
include feature names, attribute names, and column IDsalong with the importance.

Usage:
--training_in income.data.st \
--testing_in income.test.st \
--variable_importances_out variable_importances.out
--variable_importances_out_as_json on

Table 68: RDFR Output Data Options (continued)
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--min_node_weight

Theminimum bound on the totalweight in each leaf during tree building. This value
defaults to2.

Usage:
--min_node_weight 4

--num_dimensions

The number of dimensions to sample at each node. Bydefault, RDFR used (D/3)
dimensions, whereD is the total number of attributes in the dataset.

Usage:
--num_dimensions 1:1:4

--num_trees

The number of trees in the ensemble. Must be >0.

Usage:
--num_trees 5:5:100

--sampling_ratio

Per class sampling ratio. Youmust either specify a single--sampling_ratio that
will be used for each class, or repeat the--sampling_ratiooption for each class
in--training_labels_in. If omitted with--sample_with_
replacement=on, full bootstrapping will be used. If--sample_with_
replacement=off, then this option ismandatory.

Usage:
--training_labels_in income.data.labels \
--sampling_ratio 0.25 \
--sampling_ratio 2

--tree_depth

The depth to which each ensemble is built. If set to0, treeswill be built to the fullest
extent.

Usage:
--tree_depth 0:2:10

Table 69: Tunable RDFR Options. Specify a single value, comma-separated list, or <min>:<step size>:<max>.

Command Description

--cardinality_based_
dimension_sampling

Categorical dimensionswith larger number of unique values in a given node will have a
proportionately higher chance of being selected when sampling dimensions.
Continuous featuresare treated ashaving one unique value.Whenoff, all
dimensionshave an equal chance of being selected in dimension sampling.

Usage:
--cardinality_based_dimension_sampling off

--categorical_random_split_
threshold

If the number of categorical valuesexceeds this, then random splitting is attempted.
Note that this option is deprecated andmaybe removed in a future release.

Usage:
--categorical_random_split_threshold 5

Table 70: RDFR Options
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--categorical_random_split_
tries

The number of times to try random categorical splits. Note that this option is
deprecated andmaybe removed in a future release.

Usage:
--categorical_random_split_tries 8

--categorical_sampling_seed

Optionally specify the categorical values sampling random number seed. Note that this
option is deprecated andmaybe removed in a future release.

Usage:
--categorical_sampling_seed 4

--categorical_selection_
method

Optionally specify one of the following:

▪ random

▪ random_exact

▪ one_vs_all

▪ one_vs_all_random

▪ one_vs_all_exact

▪ exact

Note that this option is deprecated andmaybe removed in a future release.

Usage:
--categorical_selection_method random

--compression

Compression for data. Reduces computational resource requirements.

Note: Unlike other commands, the= symbol ismandatorywhen specifying this option.

Usage:
--compression=off

--dimension_sampling_seed

The dimension sampling random number seed. If omitted, a time-based seed will be
used.

Usage:
--dimensions_sampling_seed 10

--num_cached_trees

Optionally specify the number of simultaneously cached trees in the ensemble. Higher
values lead to higher memoryusage. Lower values result in lower memoryusage at
the expense of increased runtime. This value defaults to the number of available
threads.

Usage:
--num_cached_trees 6

--sample_with_replacement

For each tree, sample the training points using replacement (bootstrap). This option is
on bydefault. If turned off,--sampling_ratiomust be provided.

Usage:
--sample_with_replacement off
--sampling_ratio 0.25

Table 70: RDFR Options (continued)
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--table_sampling_seed

The data sampling random number seed. If omitted, a time-based seed will be used.

Usage:
--table_sampling_seed 1359937539

--testing_objective

Optionally specify the objective for selecting the test model from a set of tunedmodels.
Specify one of the following:

• mean_absolute_error (default)

• mean_squared_error

• coeff_determination

• normalized_gini

Usage:
--testing_objective mean_squared_error

Table 70: RDFR Options (continued)

Command Description

--fast_read

If set, disable verbose input checks for faster file reads. This option defaults tooff.

Usage:
--fast_read on

--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server.

Usage:
--hosts localhost,127.0.0.1

--input_file

If given, load input options from this file.

Usage:
--input_file input

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

Table 71: General RDFR Options
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--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--memory

Specifies the amount of memoryallocated for Skytree Server computation on each
host.When training, testing, or tuning via grid-search, if Skytree Server cannot
operate within the given amount of memory, it failswith an error message indicating
the amount of memory required for computation..

Usage:
--memory 10240

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

--threads

Optionally specify the number of per-process threads. For single host execution, the
default number of threads is set to themaximum available on the host. In distributed
mode, the number of threadsavailable to each host is the smallest maximum available
number of threadsamong the hosts. For example, if--hosts=host1,host2 is
specified and hosts "host1" and "host2" have, respectively, 4 and 8 threadsavailable, 4
threadswill be used for each process.

Usage:
--threads 16

--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

Table 71: General RDFR Options (continued)
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--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 71: General RDFR Options (continued)

Recommendation Scoring Options

The following tables show the options available in the score-recommendation module.

Command Description

--group_ids_in

Specify the file containing the ranking groupsaspredicted.

Usage:
--group_ids_in ranking.test.groupids

--scores_in

Specify the file containing the classification scoresaspredicted.

Usage:
--scores probabilities

--true_labels_in

Specify the file containing the true classification labels.

Usage:
--true_labels_in ranking.test.kabels

Table 72: Recommendation Scoring Input Options

Command Description

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

Table 73: General Recommendation Scoring Options
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--score_weights_in

Optionally specify a file containing the score weights for each of the test points. This
determines the weight each test point gets in the final score. Bydefault, each test point
gets a weight of1.

Usage:
--score_weights_in ranking.test.weights

Table 73: General Recommendation Scoring Options (continued)

Scoring Options

The following tables show the options available in the score module.

Command Description

--capture_deviation

Specifywhether to automatically compute the capture deviation from the given input
files. This option is enabled bydefault. Requires--true_labels_in,
--scores_in, and--probabilities_in.

Usage:
--true_labels_in sdss.test.labels \
--scores_in scores.nnc.class1 \
--probabilities_in probs.nnc.class1 \
--capture_deviation off

--capture_deviation_quantiles

The number of quantiles to use for the computation of the capture deviation. Defaults
to deciles (10).

Usage:
--capture_deviation_quantiles 4

--classification_objective

If provided, this option is used to tune the probability threshold to optimize the given
measure. Specify either "accuracy" or "fscore" (default). Requires--true_
labels_inand cannot be used in conjunction with--predicted_labels_in.

Usage:
--true_labels_in sdss.test.labels \
--classification_objective accuracy

--classweight

Optionally specify a classweight. Youmust repeat the--classweightoption for
each class in--true_labels_in. If omitted, classweights of1are assumed for
every class.

Usage:
--classweight 5

Table 74: Classification Scoring Options
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--confusion_matrix

Specifywhether to compute the confusionmatrix and associated values. Requires
--true_labels_inand--predicted_labels_in. This value defaults to
on.

Usage:
--true_labels_in sdss.test.labels \
--probabilities_in probs.nnc.class1 \
--confusion_matrix off

--curve

Specifies the type of curve used for AUC/Gini calculation. Specify one of the following:

• roc: Receiver Operations Curve (ROC) (default):

▪ x-axis: false positive rate

▪ y-axis: true positive rate (capture rate)

• lorenz: Lorenz curve.

▪ x-axis: percentile

▪ y-axis: true positive rate (capture rate)

Usage:
--curve lorenz

--curve_out

Optionally specify a file to which the ROC/Lorenz curve data iswritten. Note that if
sampling points are provided via the--percentiles_inoption, then the curve's
valuesare only emitted at those sample points.

Usage:
--curve_out curve.st

--gini

Specifywhether to compute theGini index. This option defaults toonand requires
--true_labels_inand--scores_in.

Usage:
--true_labels_in sdss.test.labels \
--scores_in scores.nnc.class1 \
--gini off

--k_for_precision_recall

Optionally specifykasa value between0and1 for precision and recall at the top
100k-th percentile.kdefaults to0.1, computing precision and recall at the top 10-th
percentile.

Usage:
--k_for_precision_recall 0.3

--labels_out

Optionally specify a file to which to write labels. Requires--classification_
objectiveor --probability_threshold for classification.

Usage:
--labels_out classification.labels \
--classification_objective accuracy

Table 74: Classification Scoring Options (continued)
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--percentiles_in

Optionally specify a file containing a single line with percentile numbers (e.g., 0.5 1 5 10
20 30 50 100) to be used as sampling positions for AUC calculations from the Lorenz
curve. A low percentile value refers to high scores. If omitted, all data points are used
for integration, yieldingmost accurate results. Requires--curve=lorenz.

Usage:
--percentiles_in percentiles \
--curve lorenz

--pr_curve_out

Given true labels and probabilities, this option providesa summarized precision recall
curve of a desired size (using--pr_curve_size, which defaults to 1000) to a
specified file. Unlike the--precision_recall_outoption, this also provides
information about the confusionmatrix. The output is in CSV format and includes the
precision, recall, probability threshold, true positives (TP), false positives (FP), true
negatives (TN), false negatives (FN), and the percentile (number of points vs. total
number of points).

Usage:
--probabilities_in probabilities.class1
--true_labels_in sdss.test.targets
--pr_curve_out pr_curve.csv

--pr_curve_size

Specify the size of the precision recall curve output. This value defaults to 1000, which
outputs an entry per 0.1%-tile of the test points.

Usage:
--probabilities_in probabilities.class1
--true_labels_in sdss.test.targets
--pr_curve_out pr_curve.csv
--pr_curve_size 500

--precision_recall_out

Given true labels and probabilities, thiswrites the precision recall curve for each of the
unique predicted probabilities. The output contains three columns in the following
format:

<precision>,<recall>,<probability threshold> at which the valuesoccur.

Usage:
--precision_recall_out precision.recall

--predicted_labels_in

Specify the file containing the classification labels aspredicted. This and/or
--probabilities_inmust be specified for yield deviation scoring.

Usage:
--predicted_labels_in labels.wnnc

--probabilities_in

Specify the file containing the classification probabilities. This and/or --predicted_
labels_inmust be specified for yield deviation scoring.

Usage:
--probabilities_in probs.wnnc.class1

--probability_threshold

Optionally specify the probability to be used as the threshold for classification. Cannot
be used in conjunction with--predicted_labels_in.

Usage:
--probability_threshold 0.82082089

Table 74: Classification Scoring Options (continued)
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--scores_in

Specify the file containing the classification scoresaspredicted.

Usage:
--scores scores.wnnc.class1

--true_labels_in

Specify the file containing the true classification labels.

Usage:
--true_labels_in sdss.test.targets

--yield_values_in

Specify the yield file to be used when calculating the area under the yield.

Usage:
--yield_values_in income.yield.st

Table 74: Classification Scoring Options (continued)

Command Description

--predicted_targets_in

Specify the file containing the regression targets aspredicted.

Usage:
--predicted_targets_in targets.rdfr

--true_targets_in

Specify the file containing the true regression targets.

Usage:
--true_targets_in kddcup.test.targets

Table 75: Regression Scoring Options

Command Description

--true_user_item_in

Specify the file containing the true user-item pairs.

Usage:
--true_user_item_in user.item

--true_ratings_in

Specify the file containing the true recommendation ratings.

Usage:
--true_ratings_in useritem.ratings

--recommendations_in

Specify the file containing the recommended user-item pairs. User-item pairsmust be
written asCSV.

Usage:
--recommendations_in useritem.recommenation

Table 76: Recommendation Scoring Options
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--k_for_rec_scoring

Specify kused in precision and hit rate at kwhen scoring the recommendations. This
value defaults to 5.

Usage:
--k_for_rec_scoring 3

Table 76: Recommendation Scoring Options (continued)

Command Description

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--score_weights_in

Optionally specify a file containing the score weights for each of the test points. This
determines the weight each test point gets in the final score. Bydefault, each test point
gets a weight of1. This can be used in both classification and regression scoring.

Usage:
--score_weights_in sdss.test.weights

Table 77: General Scoring Options

Singular Value Decomposition Options

The following table shows the options available in the svd module.
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--algorithm

Specify to use one of the following algorithms:

• naive: standard algorithm

• fast: fast SVD algorithm (default)

• fastnaive: computes both fast and naive and compares the results

Usage:
--algorithm fastnaive

--compute_rec_error

If enabled, compute the reconstructedmatrix and its corresponding reconstruction
error. This option is not valid with--algorithm=naive. If--algorithm=fast
or --algorithm=fastnaive is specified, then this value defaults to off.

Usage:
--compute_rec_error on

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--lsv_out

Specify the output file for the left singular vectors.

Usage:
--lsv_out lsv_out

--mean_center

Specifywhether to mean-center the data before SVD, therebyperforming principal
component analysis (PCA). This option defaults tooff.

Usage:
--mean_center on

--rec_matrix_out

If given, compute and store the reconstructedmatrix in this file. This option is only valid
when--compute_rec _error is enabled.

Usage:
--rec_matrix_out reconstructed_out

--references_in

Specify the file containing the input matrix.

Usage:
--references_in pm_100x40.st

Table 78: SVD Options
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--relative_error

Specify the permitted relative error of the reconstructedmatrix. This is only used when
--algorithm=fast (which is the default algorithm). In this case, the
--relative_error value defaults to0.1.

Usage:
--relative_error 0.001

--rsv_out

Specify the output file for the transposed right singular vectors.

Usage:
--rsv_out rsv_out

--sv_out

Specify the output file for the singular values.

Usage:
--sv_out sv_out

--svd_rank

Output at most thismanyof the leading singular vectors. If this is not specified, then let
the algorithm decide.

Usage:
--svd_rank 3

Table 78: SVD Options (continued)

Status Options

The following table shows the options available in the status module.

Command Description

--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server.

Usage:
--hosts localhost,127.0.0.1

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

Table 79: General Status Options
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--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

Table 79: General Status Options (continued)

SVM Options

The following tables show the options available in the svm module.

Command Description

--model_in

Optionally specify a file fromwhich to load themodel.

Usage:
--model_in sdss.lsvm.model.0.1

--smart_search_restart_in

When using smart search, optionally specify to load data from a file to continue smart
search from saved data.

Usage:
--smart_search on \
--smart_search_iterations 10 \
--smart_search_restart_in sdss.train.restart

--testing_in

Optionally specify a file containing the testing data.

Usage:
--testing_in sdss.test.st

--training_in

Specify the file containing the training data.

Usage:
--training_in sdss.train.st

--training_labels_in

Specify the file containing the class labels of the training data.

Usage:
--training_labels_in sdss.train.labels

--yield_values_in

Optionally specify the file used to calculate yield valuesduring tuning. Thismust be the
same length aseither the training or tuning vector, depending on whether you are
using holdouts or a tuning table.

Note that if--testing_objective=yield is specified, then this option is
required, and its value will be used to determine the best model.

Usage:
--yield_values_in income.yield.st

Table 80: SVM Input Data Options
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--holdout_ratio

Optionally specify the fraction of the table to be held out for tuning.

Usage:
--holdout_ratio 0.2

--holdout_seed

Optionally specify the holdout sampling random number seed. This value also serves
as the seed for --num_folds. If omitted, a time-based seed will be used.

Usage:
--holdout_seed 2

--num_folds

Optionally specify the number of folds for k-fold cross-validation. If--holdout_
ratio is also specified, thenMonte Carlo cross-validation (with randomlydrawn
holdout sets) is instead performedwith the specified number of restarts.

Usage:
--num_folds 5

--smart_search

Specify to use an intelligent tuning technique (instead of naive grid search). No tuning
parameters need to be specified when using this flag. However, if desired, users can
provide open or closed intervals for any tuning parameter using <min>:<max>or
<min>: or :<max>. Specific valuesat regular intervals can also be specified with
<min>:<step>:<max>.

Note that this option cannot be used in conjunction with--model_inor
--probability_threshold.

Usage:
--smart_search on

--smart_search_iterations

When--smart_search=on, optionally specify the number of search rounds to try
for tuning. This valuemust be greater than0and defaults to100.

Usage:
--smart_search on \
--smart_search_iterations 500

--smart_search_seed

When--smart_search=on, optionally specify the search seed. If omitted, a time-
based seed will be used.

Usage:
--smart_search on \
--smart_search_seed 82427

--tuning_in

Optionally specify a file containing the tuning data. Cannot be provided together with
--num_foldsor --holdout_ratio.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels

--tuning_labels_in

Optionally specify a file containing the labels of the tuning data. Required if
--tuning_in is provided.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels

Table 81: SVM Model Validation Options
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--tuning_models_out

Optionally specify a file prefix for storage of all tuningmodels. Used only in conjunction
with--tuning_in.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels \
--tuning_models_out sdss.tune.models

--tuning_results_format

When outputting tuning results, specifywhether the format isCSVor JSON. This value
defaults toCSV.

Note: TheCSV format maychange. If your environment includesanyautomation that
relies on parsing this file, then we recommend using the extensibleJSON format.

Usage:
--tuning_results_out sdss.tune.results \
--tuning_results_format json

--tuning_results_out

Optionally specify a file to store all tuning results. Bydefault, the output format isCSV,
but this can be changed toJSON using--tuning_results_format.

Usage:
--tuning_results_out sdss.tune.results

Table 81: SVM Model Validation Options (continued)

Command Description

--labels_out

Optionally specify a file to store computed labels.

Usage:
--labels_out sdss.test.labels.lsvm

--model_out

Optionally specify a file to store the trainedmodel.

Usage:
--model_out sdss.lsvm.model.0.1

--output_with_ids

If enabled, the per-point--labels_outoutput will be prepended with the input
file's "id" meta field followed bya comma. For example, if the original output is "a,b,c"
then the new output would be "ID,a,b,c" where "ID" is an integer (1, -1). If an "id" meta
field is not available in the input, then "0" is set as the input "id" field (for example,
"0,a,b,c").

This option is disabled bydefault.

Usage:
--output_with_ids on

Table 82: SVM Output data Options
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--partial_dependencies_out

Specify the file to store the partial dependenciesof the relevant featuresand/or
feature pairs in JSON format. These can be used to generate partial dependence
plots.

This option is available when:

• Training along with (model save OR testing)

• Tuning followed by training + (model save OR testing)

Note: This option can only be used with linear svmmodels.

Usage:
--partial_dependencies_out dependencies.json

--pmml_out

Specify the file name to use when exportingmodels to PMML format.

Note: This option is not supported for distributed non-linear SVM.

Usage:
--pmml_out sdss.pmml

--probabilities_out

Optionally specify a file to store computed probability estimates for test points.

Usage:
--probabilities_out probabilities.svm

--smart_search_restart_out

When using smart search, optionally specify to save smart search data to a file. This file
can then be specified when running additional smart search iterations.

Usage:
--smart_search on \
--smart_search_iterations 10 \
--smart_search_restart_out sdss.train.restart

Table 82: SVM Output data Options (continued)

Command Description

--classification_objective

Optionally specify the objective for classification threshold tuning. Specify either
fscoreor accuracy. This option cannot be used in conjunction with
--probability_threshold.

Usage:
--classification_objective accuracy

--compression

Specifywhether to perform compression for data. Reduces computational resource
requirements. This option defaults toon.

Note: Unlike other commands, the= symbol ismandatorywhen specifying this option.

Usage:
--compression=off

Table 83: Non-Tunable SVM Options
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--epsilon

Specify the numerical accuracy to which to train the SVM. Defaults to 1e-3.

Usage:
--epsilon 0.002

--exclude_bias_term

If set, the SVM formulation will not have a bias term. A bias term is used bydefault.

Usage:
--exclude_bias_term on

--k_for_precision

Optionally specify kasa value between0and1 for precision at the top 100k-th
percentile. kdefaults to0.1.

Usage:
--k_for_precision 0.2

--kernel

Specify the kernel function to be used for the SVM. Specifylinear (default),rbf
(Gaussian), or polynomial.

Note: An SVM smart search run is based on a specified kernel type. If--kernel is
not specified, smart search will run using--kernel=linear. If a different kernel
function is desired in smart search, then it must be explicitly specified.

Usage:
--kernel rbf

--limit_parameters

When--smart_search is enabled, this option restricts the parameter space in
order to reduce the training time. This option is enabled bydefault.

Usage:
--smart_search on
--limit_parameters off

--max_cache_memory

Specify themaximum allowedmemory, in megabytes, used to cache the rowsof the
kernelmatrix (to reduce recomputation). This value defaults to 500MB for nonlinear
SVM.

Usage:
--max_cache_memory 1000

--max_iterations

Specify themaximum allowed number of iterations for the training algorithm. This
valuemust be >0. For linear SVM training, this corresponds to the number of passes
over the data.

Usage:
--max_iterations 5000000

--probability_threshold

Optionally specify the probability to be used as the threshold for classification. Note that
this cannot be used with--smart_search.

Usage:
--probability_threshold 0.8208208919380429

Table 83: Non-Tunable SVM Options (continued)
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--table_sampling_seed

Specify the data sampling random number seed. If omitted, a time-based seed will be
used.

Usage:
--table_sampling_seed 1359937539

--testing_objective

Optionally specify the objective for selecting the test model from a set of tunedmodels.
Specify one of the following:

• gini (default)

• fscore

• accuracy

• capture_dev

• precision_at_k

• yield

Cannot be used in conjunction with--probability_threshold.

Note that ifyield is specified, then--yield_values_inmust also be specified.

Usage:
--testing_objective capture_dev

Table 83: Non-Tunable SVM Options (continued)

Command Description

--lambda

The regularization parameter in the SVM formulation. This option is required when
training or tuning without smart search. If--smart_search is enabled, then this
value is optional.

Usage:
--lambda 0.1

--polynomial_degree

Specify the degree of the polynomial kernel. This can only be used in conjunction with
--kernel=polynomial. Must be an integer > 1. This option is required if training
or tuning with--kernel=polynomial.

Usage:
--kernel polynomial \
--polynomial_degree 2

--polynomial_offset

Specify the offset of the polynomial kernel. This can only be used in conjunction with
--kernel=polynomial. Must be >=0. This value defaults to 0.

Usage:
--kernel polynomial \
--polynomial_offset 2

Table 84: Tunable SVM Options. Specify a single value, comma-separated list, or <min>:<step size>:<max>.
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--polynomial_scale

Specify the scale of the polynomial kernel. This can only be used in conjunction with
--kernel=polynomial. Must be > 0. This value defaults to 1.0.

Usage
--kernel polynomial \
--polynomial_scale 0.5

--rbf_bandwidth

Specify the bandwidth of the RBF kernel. Must be >=0. This option is required if
training or tuning with--kernel=rbf.

Usage:
--kernel rbf \
--rbf_bandwidth 1.0

Table 84: Tunable SVM Options. Specify a single value, comma-separated list, or <min>:<step size>:<max>.
(continued)

Command Description

--fast_read

If set, disable verbose input checks for faster file reads. This option defaults tooff.

Usage:
--fast_read on

--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server.

Usage:
--hosts localhost,127.0.0.1

--input_file

If given, load input options from this file.

Usage:
--input_file input

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

Table 85: General SVM Options
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--memory

Specifies the amount of memoryallocated for Skytree Server computation on each
host.When training, testing, or tuning via grid-search, if Skytree Server cannot
operate within the given amount of memory, it failswith an error message indicating
the amount of memory required for computation..

Usage:
--memory 10240

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

--threads

Optionally specify the number of per-process threads. For single host execution, the
default number of threads is set to themaximum available on the host. In distributed
mode, the number of threadsavailable to each host is the smallest maximum available
number of threadsamong the hosts. For example, if--hosts=host1,host2 is
specified and hosts "host1" and "host2" have, respectively, 4 and 8 threadsavailable, 4
threadswill be used for each process.

Note: Changing the number of threads in linear SVM (single host or multi-host) or in
nonlinear SVM (multi-host only) can change results numerically. Thiswill have only
minimal effect on scoring when themodels are trained with sufficient accuracy. In
addition, this behavior occurs onlywhen specifying--threads>1.

Usage:
--threads 16

--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 85: General SVM Options (continued)

Time Series Options

The following tables show the options available in time_slicer.sh.
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-input_file

Required. Specify the Time Series data input file.

Usage:
-input_file ~/input_data

-bounds

Optionally specify a file fromwhich to read upper and lower bounds rather than
explicitly specifying-lower_boundsand-upper_bounds.

Usage:
-bounds ~/bounds.txt

Table 86: Time Series Input Data Options

Command Description

-output_file

Required. Specify the output file for time series data.

Usage:
-output_file ~/specimen.slice

Table 87: Time Series Output Data Options

Command Description

-accuracy

Specify the accuracy for LoessSmoothing. This value defaults to 1e-12.

Usage:
-accuracy 1

-bandwidth

Specify the bandwidth for LoessSmoothing.

Usage:
-bandwidth 0.2

-iterations

Specify the number of iterations for LoessSmoothing. This value defaults to2.

Usage:
-iterations 3

-use_smoother

Specify to use LoessSmoothing instead of linear regression.When specified, this
option extracts a number of featuresequal to-window_width*4 if-time_
gap=offand-degree*4 if-time_gap=on. This option defaults to off.

Usage:
-use_smoother on

Table 88: Loess Smoothing Options
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-date_format

Format for the time stamp. Time stamp is assumed to be already converted if this
option is not specified. Note that quotes (" ") are required if the date format includes
spaces.

Usage:
-date_format "yyyy-mm-dd hh:mm:ss"

-degree

Specify the degree of the polynomial to be fit over the window. If-use_smoother is
specified, this option configures the number of features to be created by smoothing.

Usage:
-degree 2

-delimiter

Specify a character that separates columns, or specify one ofTAB,COMMA,
SEMICOLON,VBAR, or SPACE. Auto-detected if not specified. Note that Skytree
Server allowsyou to add quotationsaround text so that it will not be confused asa
delimiter (for example, when the delimiter is specified asCOMMA, and an entry includes
a deliberate comma).

Note: Becausemultiple spaces can be used to separate columns, it is necessary to
explicitly denote empty column valueswith "" when using-delimiter=SPACE.

Usage:
-delimiter TAB

-ID_column

The column indexor name for grouping time series.

Usage:
-ID_column ID

-ignore_columns

Specify the column names, numbers, or rangesof these to ignore in the sliding
window.

Usage:
-ignore_columns 3,date

-lower_bounds

Comma separated list of minima for each sensor/column. This value defaults to minus
infinity.

Usage:
-lower_bounds ,,0,

-missing_char

Specify the character or string of characters that represents entrieswith missing
values. This defaults to ?.

Usage:
-missing_char N

-num_sparse_input_columns

Specify the number of sparse columns included in libsvm-formatted data.

Usage:
-num_sparse_input_columns 4

Table 89: Time Series Options
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-previous_n

Specify the number of previouselements to transpose. Based on the column specified
with-transpose, this option specifies the previous "n" valueswithin the window that
will be turned into columns. Note that this doesnot include the last value.

This option defaults to-window_widthwhen-time_gap is turned off (default). If
-time_gap is enabled, then this optionmust be explicitly set.

Usage:
-time_gap on \
-transpose 4 \
-previous_n 2

-time_gap

If this option is enabled, the window width and window increment are defined in terms
of time stamp gap. This value defaults to off, implying that the window is defined in
termsof the number of rows.

Usage:
-time_gap on

-time_stamp

Specify a time stamp value.

Usage:
-time_stamp Date

-time_zone

Specify the timezone for the time stamp. This value defaults to GMT.When specified,
this valuemust be in the format "GMT + x:00"

Usage:
-time_zone "GMT + 3:00"

-transpose

Specify the column or columns to be transposed.

Usage:
-transpose 4,lastupdated

-upper_bounds

Comma separated list of maxima for each sensor/column. This value defaults to plus
infinity.

Usage:
-upper_bounds 0,0,,0

-use_column_names

Specifywhether to use the column names from the first row. This value defaults to
off.

Usage:
-use_column_names on

-window_increment

Specify howmuch to slide the window at each step. This value defaults to the value of
--window_width.

Usage:
-window_increment 1

-window_width

REQUIRED. Specify the width of the sliding window.

Usage:
-window_width 2

Table 89: Time Series Options (continued)
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-write_column_descriptors

Specifywhether to write column descriptors for output.

Usage:
-write_column_descriptors on

-write_window_descriptors

Specifywhether to write column descriptors for output.

Usage:
-write_window_descriptors on

Table 89: Time Series Options (continued)

Two-Point Correlation Options

The following table shows the options available in the two-pt module.

Command Description

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--queries_in

Optionally specify the data for which the two-pt correlation is to be found against the
references. If this option is not specified, then--references_in is used.

Usage:
--queries_in adult_test_transformed_stratified_6k.st

--radius

Specify the radius (NOT the squared radius) for the two-point correlation.

Usage:
--radius 1

--references_in

REQUIRED file containing the input data.

Usage:
--references_in adult_train_transformed_stratified_10k.st

Table 90: Two-Point Correlation Options
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Weighted Nearest Neighbors Classification Options

The following table shows the options available in the wnnc module.

Command Description

--algorithm

Specify the algorithm to find nearest neighbors. Specifynaive,fast, or fastest
(default).

Usage:
--algorithm naive

--alpha

Specify an optional approximation parameter 1 when performing alpha-beta
approximation. This option specifies the accuracyandmust be in the range (0, 1).
Larger --alphaand--betawill improve accuracy somewhat, though smaller
valuesare key for speed.

Usage:
--alpha 0.2 \
--beta 5

--alpha_beta_random_seed

Optionally specify the random number seed used for alpha-beta approximation. This
option is used only in conjunction with--alpha. If omitted, the current time is used.

Usage:
--alpha 0.2 \
--beta 5 \
--alpha_beta_random_seed 123

--bandwidth

Optionally specify the bandwidth used for gaussian and epan kernels. For --dist_
weight=gaussian/epan, this option is relative to the furthest neighbor distance.
For fixed_gaussian/fixed_epan, it is an absolute bandwidth. If omitted,
bandwidthsof 1.0 are assumed for every class.

Usage:
--dist_weight epan \
--bandwidth 0.75 \
--bandwidth 1.10

--beta

Specify an optional approximation parameter 2 when performing alpha-beta
approximation. This parameter specifies howmanysamplesare taken andmust be at
least1. Larger --alphaand--betawill improve accuracy somewhat, though
smaller valuesare key for speed.

Usage:
--alpha 0.2 \
--beta 5

--classification_objective

Optionally specify an objective for classification threshold tuning, either 'accuracy' or
'fscore' (default). This option cannot be used in conjunction with
--probability_threshold.

Usage:
--classification_objective accuracy

Table 91: WNNC Options
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--classweight

Optionally specify the classweight for use with nearest neighbor classification. This
option impacts the scoresand probabilities. Youmust repeat the--classweight
option for each class in--training_labels_in. If omitted, classweights of 1
are assumed for every class.

Usage:
--training_labels_in sdss.train.labels \
--classweight 10 \
--classweight 1

--compression

Specifywhether to use compression for data. Enabling this (default) reduces
computational resource requirements.

Note: Unlike other commands, the= symbol ismandatorywhen specifying this option.

Usage:
--compression=off

--curve

Specifies the type of curve used for AUC/Gini calculation. Specify one of the following:

• roc: Receiver Operations Curve (ROC) (default):

▪ x-axis: false positive rate

▪ y-axis: true positive rate (capture rate)

• lorenz: Lorenz curve.

▪ x-axis: percentile

▪ y-axis: true positive rate (capture rate)

Usage:
--curve lorenz

--dist_weight

Distance weightingmethod used for scoring. Specify one of the following:

• 1/r : weight by the inverse distance (default)

• 1/r^2 : weight by the inverse distance squared

• gaussian: weight by the multivariate normal distribution

• epan: weight by the Epanechnikov kernel

• fixed_gaussian: weight by the multivariate normal distribution

• fixed_epan: weight by the Epanechnikov kernel

Usage:
--dist_weight epan

--distances_out

Optionally specify a file to store found neighbor distances (not the squared distances).

Usage:
--distances_out distances

Table 91: WNNC Options (continued)
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--explore_persistence

Optionally specify a value to set the persistence of the exploremethod. This is only
used in conjunction with--metric_learning_method=explore. This value
defaults to0.2andmust be between0and1.

Usage:
--metric_learning_method explore \
--explore_scales_in explore_scales \
--explore_persistence 0.3

--explore_scales_in

Optionally specify a file containing scaling factors for each dimension. Only used in
conjunction with--metric_learning_method=explore.

Usage:
--metric_learning_method explore \
--explore_scales_in explore_scales \
--explore_persistence 0.3

--fast_read

If set, disable verbose input checks for faster file reads. This option is disabled by
default.

Usage:
--fast_read on

--fit_method

Specify the fittingmethod used for --fit_metric_weightsand/or --metric_
learning_method={forward_fit,backward_fit}. Set to1 (default) or
2.

Usage:
--fit_method 2

--fit_metric_weights

If set, fit initialmetricweights. This option is disabled bydefault.

Usage:
--fit_metric_weights on

--fit_metric_weights_out

Optionally specify a file for outputting the fit metricweights. This is used only in
conjunction with--fit_metric_weights.

Usage:
--fit_metric_weights on \
--fit_metric_weights_out fit_weights.csv

--fit_reg

Control parameter for fit method. Use a small positive number between 0 and 1. This
value is set to 1e - 6 bydefault. This is only used in conjunction with--fit_
method=2.

Usage:
--fit_method 2 \
--fit_reg 0.02

Table 91: WNNC Options (continued)
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--fit_threshold

Specify an optional threshold value for pruning fittedmetricweights. The fit threshold
prunesdimensions that seem unhelpful byweighting them to 0. Lower valuesare
more aggressive. Set to 0 to disable. Bydefault--fit_threshold=8.0 for
--fit_metric_weightsbut is disabled for --metric_learning_
method=forward_fit. This option is only used when--fit_method=1.

Usage:
--fit_method 1 \
--fit_metric_weights on \
--fit_threshold 4

--hosts

Comma-separated list of hosts on which to run the distributed version of Skytree
Server.

Usage:
--hosts localhost,127.0.0.1

--imbalance

If set, attempt to improve nearest neighbor classification for imbalanced classes. This
option is enabled bydefault.

Usage:
--imbalance off

--imbalance_scale

Specify the relative size of all classeswith respect to the smallest class. This option
requires--sample_imbalance.

Usage:
--sample_imbalance on \
--imbalance_scale 2

--indices_out

Optionally specify a file to store found neighbor indices

Usage:
--indices_out neighbors

--k_neighbors

REQUIRED. Specify the number of neighbors to use for scoring/classification.

Usage:
--k_neighbors 20 \

--k_neighbors 10

--labels_out

Optionally specify a file to output the computed classification labels.

Usage:
--labels_out labels

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

Table 91: WNNC Options (continued)
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--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--memory_usage

Specify themaximum fraction of systemmemory to use in the range[0.0,1.0]. If
set to0.0, automaticmemorymanagement is disabled. Bydefault, Skytree Server
makesan effort not to exceed 75%of its host system’smemory, breaking computation
into smaller chunks if necessary.

Usage:
--memory_usage 0.80

--metric_learning

Specifywhether to performmetric learning. This option is disabled bydefault.

Usage:
--metric_learning on

--metric_learning_iterations

Specify the number of iterations for metric learning. This value defaults to10and is
only used for --metric_learning_method={random,explore}.

Usage:
--metric_learning on \
--metric_learning_method random \
--metric_learning_iterations 20

--metric_learning_method

Specify themethod used for metric learning. This is only used in conjunction with
--metric_learning. Specify one of the following:

• forward

• forward_fit (default)

• backward

• backward_fit

• explore

• random

Usage:
--metric_learning on \
--metric_learning_method explore

Table 91: WNNC Options (continued)
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--metric_learning_min_dim_
ratio

Parameter for --metric_learning_method={backward,backward_
fit}. Specifies the fractional dimensionality at which to end
backward/backward_fitmetric learning. This option defaults to0andmust be
in the range (0-1). A value of0.5, for example, would specify that the lowest
dimensionality to be tried is half the number of full dimensions.

Usage:
--metric_learning on \
--metric_learning_method backward \
--metric_learning_min_dim_ratio 0.5

--metric_learning_objective

Specify one of the following objectives for tuning:

• gini (default)

• fscore

• accuracy

• capturedev

Usage:
--metric_learning on \
--metric_learning_objective fscore

--metric_learning_random_seed

Optionally specify a random number seed used for metric learning. This is used only in
conjunction with--metric_learning_method=
{random,explore,forward_fit}. For forwardandforward_fit, this
parameter is only used if--metric_learning_min_dim_ratio>0. If
omitted, the current time is used.

Usage:
--metric_learning on \
--metric_learning_method forward_fit \
--metric_learning_min_dim_ratio 0.5 \
--metric_learning_random_seed 123

--metric_weights_in

Optionally specify a file containing themetricweights. Must have asmanyvaluesas
there are dimensions.

Usage:
--metric_weights random.csv

--optimal_metric_weights_out

Optionally specify a file for outputting the optimalmetricweights. Only used in
conjunction with--metric_learning.

Usage:
--metric_learning on \
--optimal_metric_weights_out random.csv

--percentiles_in

Optionally specify a file containing a single line with percentile numbers (e.g., 0.5 1 5 10
20 30 50 100) to be used as sampling positions for AUC calculations from the
ROC/Lorenz curve. A low percentile value refers to high scores. If omitted, all data
points are used for integration, yielding themost accurate results.

Usage:
--percentiles_in percentiles

Table 91: WNNC Options (continued)
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--probabilities_out

Optionally specify a file to output the computed classprobabilities.

Usage:
--probabilities_out probabilities.wnnc

--probability_threshold

Specify an optional probability to be used as the threshold for classification. Cannot be
used in conjunction with--classification_objective.

Usage:
--probability_threshold 0.82082089

--procs_per_host

Specify the number of processes for each--host. If the--procs_per_host
option is not provided, then Skytree Server will perform a single processon each host.
If--procs_per_host is provided without--hosts, then the specified number of
processeswill be used onlocalhost.

Usage:
--hosts localhost,127.0.0.1 \
--procs_per_host 3

--rank_error_prob

Optionally specify a probability (between0and1) with which the rankerror is
guaranteed. Can only be used in conjunction with--rank_error_tol.

Usage:
--rank_error_tol 0.05 \
--rank_error_prob 0.9

--rank_error_random_seed

Optionally specify a random number seed used for rankapproximation. Only used in
conjunction with--rank_error_tol. If omitted, the current time is used.

Usage:
--rank_error_tol 0.05 \
--rank_error_random_seed 123

--rank_error_tol

Optionally specify the rankerror tolerance (asa fraction of all neighbors). Specify a
value between0and1. The neighbors found will have a rankerror of less than
--rank_error_tol times the number of all neighbors, guaranteed with the
probability given by--rank_error_prob. Larger valuesof--rank_error_
tolwill lead to greater speedups.

Usage:
--rank_error_tol 0.05 \
--rank_error_prob 0.9

--sample_imbalance

If set, attempt to improve classification for imbalanced classes. This option cannot be
used in conjunction with--sampling_ratio. If this option is enabled, then
--imbalance_scale can be specified. This option is disabled bydefault.

Usage:
--sample_imbalance on

Table 91: WNNC Options (continued)
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--sample_with_replacement

For each tree, sample the training points using replacement (bootstrap). This option is
onbydefault. If turnedoff,--sampling_ratiomust be provided.

Usage:
--sample_with_replacement off \
--sampling_ratio 0.25

--sampling_ratio

Per class sampling ratio. Youmust either specify a single--sampling_ratio that
will be used for each class, or repeat the--sampling_ratiooption for each class
in--training_labels_in. If omitted with--sample_with_
replacement=on, full bootstrapping will be used. If--sample_with_
replacement=off, then this option ismandatory.

Usage:
--training_labels_in income.data.labels \
--sampling_ratio 0.25 \
--sampling_ratio 2

--scores_out

Optionally specify a file to output the computed classification scores.

Usage:
--scores_out scores.wnnc

--scoreweight

Optionally specify the score weight for use with nearest neighbor classification. This
value will affect the probabilities. Youmust repeat the--scoreweightoption for
each class in--training_labels_in. If omitted, score weights of1are
assumed for every class.

Usage:
--scoreweight 5

--smoothing

Specify the probability smoothing parameter. Must be >=0. Disabled if set to0.0
(default).

Usage:
--smoothing 0.001,0.01

--table_sampling_seed

Optionally specify a random number seed used for table sampling. If omitted, the
current time is used.

Usage:
--table_sampling_seed 1359937539

--testing_in

Optionally specify a file containing the testing data.

Usage:
--testing_in sdss_test.st

Table 91: WNNC Options (continued)
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--threads

Optionally specify the number of per-process threads. For single host execution, the
default number of threads is set to themaximum available on the host. In distributed
mode, the number of threadsavailable to each host is the smallest maximum available
number of threadsamong the hosts. For example, if--hosts=host1,host2 is
specified and hosts "host1" and "host2" have, respectively, 4 and 8 threadsavailable, 4
threadswill be used for each process.

Usage:
--threads 16

--training_in

REQUIRED. Specify the file containing the training data.

Usage:
--training_in sdss.train.st

--training_labels_in

REQUIRED. Specify the file containing the class labels of the training data.

Usage:
--training_labels_in sdss.train.labels

--tuning_in

Optionally specify a file containing the tuning data. Cannot be provided together with
--num_foldsor --holdout_ratio. If specified, then--tuning_labels_
inmust also be specified.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels

--tuning_labels_in

If--tuning_in is specified, then also specify a file containing the labels of the tuning
data.

Usage:
--tuning_in sdss.tune.st \
--tuning_labels_in sdss.tune.labels

--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 91: WNNC Options (continued)
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What-If Options

The following tables show the options available in the whatif module.

Command Description

--model_in

REQUIREDmodel file.

Usage:
--model_in model

--testing_in

REQUIRED file containing the testing data.

Usage:
--testing_in income.data.st

--testing_labels_in

Optionally specify the file containing the class labels of the testing data. This option is
required for classifier models.

Usage:
--testing_labels_in income.data.labels

--testing_targets_in

Optionally specify a file containing the targets of the testing data. This option is required
for regressor models.

Usage:
--testing_targets_in income.data.targets

Table 92: What-If Input Data Options

Command Description

--num_trials

Specify the number of importance calculationsover which to average. This value
defaults to1.

Usage:
--num_trials 5

--shuffle_seed

Specify the data shuffling random number seed. If omitted, a time-based seed will be
used.

Usage:
--shuffle_seed 10584

--variable_importances_out

REQUIRED output file for variable importances.

Usage:
--variable_importances_out importances.out

Table 93: Variable Importances Options. Supported methods include GBT, GBTR, RDF, and RDFR
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--compression

Specifywhether to use compression for data. Enabling this (default) reduces
computational resource requirements.

Note: Unlike other commands, the= symbol ismandatorywhen specifying this option.

Usage:
--compression=off

--fast_read

If set, disable verbose input checks for faster file reads. This option is disabled by
default.

Usage:
--fast_read on

--log

If given, write log to this file instead ofstdout.

Usage:
--log log_run

--loglevel

Optionally specify the level of log detail. Specify one of the following:

• verbose: log everything

• default: log messages and warnings

• warning: log only warnings

• silent: no logging

Usage:
--loglevel verbose

--num_cached_trees

Specify the number of simultaneously cached trees to be used for ensemblemethods.

Usage:
--num_cached_trees 6

--threads

Number of threads to use. This value defaults to24.

Usage:
--threads 32

--watchdog

If set, monitor system resourcesand warn if theyare running low. Note that this is
enabled bydefault.

Usage:
--watchdog off

--watchdog_high_load_
threshold

Thewatchdog warns if the (normalized) system load is higher than the specified value.
This value defaults to1.5.

Usage:
--watchdog_high_load_threshold 1

Table 94: General What-If Options
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--watchdog_low_memory_
threshold

Thewatchdog warns if the amount of available systemmemory is less than the
specified fraction. This value defaults to0.05.

Usage:
--watchdog_low_memory_threshold 1

Table 94: General What-If Options (continued)
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